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Abstract

Simultaneously acquisition of the surface normal and re-
flectance parameters is a crucial but challenging technique
in the field of computer vision and graphics. It requires cap-
turing multiple high dynamic range (HDR) images in exist-
ing methods using frame-based cameras. In this paper, we
propose EventPSR, the first work to recover surface normal
and reflectance parameters (e.g., metallic and roughness)
simultaneously using an event camera. Compared with the
existing methods based on photometric stereo or neural ra-
diance fields, EventPSR is a robust and efficient approach
that works consistently with different materials. Thanks to
the extremely high temporal resolution and high dynamic
range coverage of event cameras, EventPSR can recover ac-
curate surface normal and reflectance of objects with vari-
ous materials in 10 seconds. Extensive experiments on both
synthetic data and real objects show that compared with ex-
isting methods using more than 100 HDR images, EventPSR
recovers comparable surface normal and reflectance pa-
rameters with only about 30% of the data rate.

1. Introduction

The fast and accurate acquisition of the shape and appear-
ance information of an object is essential for many tasks
in computer vision and computer graphics. This technique
enables re-rendering realistic digital twins of real-world ob-
jects, supporting a wide range of downstream applications,
such as virtual reality, augmented reality (AR), and digital
content creation. However, dynamic range is a big issue
when the material is composed of diffuse and highly spec-
ular properties. The time-consuming capturing process and
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Figure 1. The EventPSR applies a sequence of light scanning pat-
terns and an event camera to recover the accurate normal map and
reflectance parameters (i.e., metallic and roughness) simultane-
ously. A two-stage pipeline consisting of a grid-matching and a
gradient-tuning stage is proposed for EventPSR, which supports
shape and reflectance recovery for different materials.

difficulty recovering highly specular surfaces are two major
challenges in this area.

Traditional shape and reflectance estimation methods [1,
3, 10, 15, 28, 31, 32] rely on multiple high dynamic range
(HDR) images captured under varying lighting conditions
or viewing angles. Different from photometric stereo (PS)
that estimates the surface normal of diffuse dominant ob-
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jects from several images, shape and appearance estimation
methods [1, 15] require more images to ensure the accurate
observation of various reflections, which is time-consuming
especially for shiny materials recovery. It is difficult to fully
cover the specular highlights in shiny and metallic (i.e.,
mirror-like) materials under directional light without com-
plicated capturing setup [15] and multiple images to cover
the dynamic range. Such a dilemma between speed and ac-
curacy partly attributes to the insufficient capability of con-
ventional frame-based cameras.

Event cameras characterized by extremely high tempo-
ral resolution and dynamic range, have shown promising
advantages in many computer vision applications [9]. Re-
searchers have explored applying event cameras in various
photometric tasks [6, 19, 29, 33]. Particularly, EventPS [29]
has demonstrated the superiority of event cameras for real-
time surface normal estimation, showing the potential to
accelerate and improve accuracy for shape and reflectance
estimation tasks. However, it is still unclear how to ex-
tract material-related parameters, including roughness and
metallic, from the event stream only.

In this paper, we propose EventPSR, a novel solution
for simultaneous estimation of both surface normal and
Reflectance properties from Photometric Stereo using an
Event camera. As shown in Fig. 1, EventPSR can simul-
taneously recover an object’s shape and reflectance prop-
erties” with designed light scanning patterns and a two-
stage algorithm, which supports the recovery of different
materials. Directly applying the setting and algorithm from
EventPS [29] (i.e., capturing objects with a fixed event cam-
era under a fast-moving point light source) is a non-trivial
task. It is impossible to estimate the shape and reflectance
at the same time without conquering the two challenges: 1)
Design a suitable light scanning pattern that covers various
materials and fully reveals the shape and reflectance proper-
ties of the objects. 2) Propose a new algorithm that converts
the event signals to accurate normal and reflectance param-
eters simultaneously under the light scanning pattern.

To conquer the first challenge, we discover that there are
three requirements that need to be satisfied for a suitable
light scanning pattern: specular coverage, diffuse sensitiv-
ity, and event efficiency. Based on this, we design a pattern
of “1D strip light” that covers the full sphere of the illumi-
nation direction space. It is designed not only for various
materials ranging from ideal Lambertian to pure mirror, but
also for efficient capture of event cameras with faster speed
and low data rate. To conquer the second challenge, we pro-
pose a two-stage algorithm to estimate surface normal and
reflectance parameters, consisting of a grid-matching stage
and a gradient-tuning stage. We first render a database con-
sisting of the intensity-changing curves, including the com-

2In this work, we recover reflectance-related properties specifically with
roughness and metallic.

binations of various surface normal directions and materi-
als. In the grid-matching stage, we match the event stream
triggered in each pixel to a specific curve in the database
and get a group of coarse reflectance parameters. In the
gradient-tuning stage, we finetune the estimated parameters
to a more accurate sub-grid location. To summarize, the
contributions of this paper are as follows:

* We propose EventPSR, the first solution to estimate sur-
face normal and reflectance parameters simultaneously
from continuous radiance differential event signals.

* We design a suitable light scanning pattern and an effi-
cient two-stage algorithm with only 30% data rate com-
pared with frame-based counterparts.

* We validate the effectiveness of EventPSR by a platform
with multiple monitors. The results show that EventPSR
can estimate accurate shape-related and material-related
parameters of real objects.

2. Related Works

Our method is related to PS works, and comprehensive sur-
veys can be found in [ 14, 25]. This section focuses on works
addressing PS and surface reflectometry using conventional
frame-based cameras, as well as recent advancements in
photometry using event cameras.

Surface reflectometry. Measuring the detailed surface re-
flectance requires the use of controlled lighting to sample
photometric stereo images. Romeiro et al. [23] inferred the
bi-directional surface reflectance of materials using a light
probe and a single HDR image of the known surface nor-
mal. Dupuy and Jakob [8] measured the reflectance spectra
using a gonio-photometer to simultaneously handle BRDF
acquisition, storage, and rendering. Learning-based BRDF
acquisition and modeling approaches are summarized in the
survey paper [17]. EventPSR differs from this category of
research because we simultaneously recover the normal and
reflectance parameters.

Normal and reflectance estimation from conventional
cameras. Alldrin et al. [1] proposed to employ novel bi-
variate approximations of isotropic reflectance functions to
simultaneously recover the shape and reflectance of a sur-
face from photometric stereo images. Chung et al. [7] op-
timized the geometry and spatially-varying BRDFs through
a point-based rendering. Learning-based methods applied
convolutional neural networks on single image [2, 21, 30]
or multiple images [15, 24] to estimate the surface normal
and reflectance parameters. These methods are limited in
capturing speed due to the low dynamic range and high la-
tency of conventional cameras.

Event camera-based photometry. Event cameras with
high temporal resolution and high dynamic range proper-
ties have been applied to various photometry tasks in recent
years. Muglikar ef al. [19] put a linear polarizer rotating
at high speeds in front of an event camera to reconstruct



relative intensities at multiple polarizer angles, which were
used for surface normals estimation. Han et al. [11] com-
puted the frequencies of the event triggering during the tran-
sient process of global lighting changes for depth sensing
and object iso-contour reconstruction. Zhou et al. [33] pro-
posed to use the differential signals captured from an event
camera to separate the direct and global illumination com-
ponents in RGB videos by applying a sweeping occluder.
EventPS [29] leveraged an event camera and a fast-rotating
light source to achieve real-time surface normal reconstruc-
tion, which demonstrated the superiority over the conven-
tional cameras in speed and data bandwidth. EventPSR can
further estimate surface normal and reflectance parameters
with high robustness and efficiency by designing light scan-
ning patterns and estimation algorithms.

3. Method

As shown in Fig. 1, the overall workflow of EventPSR
includes the design of suitable lighting scanning patterns
(Sec. 3.2) and a two-stage algorithm that recovers surface
normal and reflectance parameters (Sec. 3.3). In Sec. 3.1,
we start from the mathematical formulation of event cam-
eras, parameterized reflectance models, and target function.

3.1. Problem Formulation

Event formation model. Event cameras measure the scene
brightness changes asynchronously on a logarithmic scale.
An event e = {t,x,y,p} is triggered when the changes
of logarithmic brightness reach a triggering threshold C),
where t is the timestamp, (x,y) is the pixel coordinate,
and p € {—1,+1} is the polarity which represents the de-
crease or increase of brightness. Assuming there are totally
K events triggered at pixel (x,y) during a short period of
time, these events are represented as &, , = {z,y, Pk, ti }»
where k = {1,2,..., K}. The irradiance value I in pixel
(z,y) changing from ¢;_1 to ¢ is represented as:

log(Lzy (k) +€) = log(Ly,y (tr—1 + 1) +€) + peC, (1)

where € is a small offset value to avoid taking the logarithm
of zero, and 7 is the refractory time of the pixel [9].
Reflectance model and inverse problem. We use a simpli-
fied version of Disney Principled BRDF [4] model to repre-
sent the reflectance (£, ; ,) of the surface. Given an opaque
and non-emissive object with a distant light source, the ir-
radiance value I, , (t) at timestamp ¢ is as follows:

L, (t) = / Ny Wy (i WL (i
JW;E
2)

where () is the whole sphere direction space, N, , is the
surface normal, L is the light source function, w; and w,
are the incident and reflection direction, respectively. The
light source function L(w, t) represents a distant light with

the same brightness at an angle of w,. For each pixel (z,y),
its reflectance f, ; ,, is represented as:

L= My M, ,DG

™ T(Ngy - Wi)(Ngy - W)’
3

fr,w,y(wi7 Wr) -

where D, GG are parameters that describe specular reflection
property.® The variation of diffuse albedo has been canceled
by the log difference mechanism in event cameras [29], so
we set it as 1 in our method. Other parameters and Fres-
nel term from Disney Principled BRDF [4] are removed for
simplicity.

Target function. To recover the surface properties,i.e.,
N, (Surface normal), R, (Roughness, in the supple-
mentary material), and M, , (Metallic), we design a light
scanning pattern L(w,,¢) and apply an event camera to
solve the inverse reflectance estimation problem. We repre-
sent the shap~e and reflection estimation algorithm as N (&),
R(£), and M(E). Our target is to design these algorithms
and optimize light scanning patterns L to estimate the sur-
face normal and reflectance parameters:

argmin Z \N(5)7N|2+
LNRMN MR 4

IML(E) — Ml + [R(E) — Rz,
where the events £ are triggered from L, N, R, M.

3.2. Light Scanning Pattern Design

It is necessary to design a suitable light scanning pattern
to cover different materials and the shape of target ob-
jects. There are three requirements when designing the light
scanning pattern: specular coverage, diffuse sensitivity, and
event efficiency. In the following, we consider an effective
use of a ring-shaped light source as the base scanning pat-
tern. Taking a ring moving along the Z axis as an example,
the formula of L(w;, t) is:

L(w;,t) = max max(0, w; - R(u, 1)), 5
R(u,t) = [sin(t) sin(u), sin(t) cos(u), cos(t)],

where R(u,t) represent all light directions on a ring. « is
the width of the ring. In order to illustrate that our “mov-
ing ring light” pattern has better properties to overcome all
these challenges, we compare it with two other light source
patterns: “point light” and “structured environment map”.
For the “point light” pattern, we combine two spiral
movement trajectories to cover the whole sphere: the hor-
izontal spiral and vertical spiral. In this way, we obtain
a continuous moving light source pattern. We also add a

3Detailed formulas are shown in the supplementary material.
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Figure 2. The design of light scanning pattern. (a) Illustration of specular coverage requirement. The first row shows a shiny ball under
three lighting patterns. The second row shows where specular parameters can be recovered (the brighter the better). (b) Illustration of
diffuse sensitivity requirement. The first row shows the rendered frames of a diffuse ball under three lighting patterns. The second row
shows the profiles of intensity changes of two different points on the sphere over time. (c) Illustration of event efficiency requirement. The
first row shows the event signals triggered under three lighting patterns. The second row plots the average (green) and max (red) number
of events triggered over time when covering the whole specular reflection.

smoothness term ¢ (the size of the point light), so the light-
ing will cover the whole sphere lighting direction gradually.
For the horizontal spiral, the formula L(w;, t) is:

L(Wiﬂt) = (R(t) 'Wi)a>

R(t) = [sin(Bt) cos(t), cos(St) cos(t), sin(t)], ©

where 3 determines the number of spirals. For the vertical
spiral, the formula L(w, t) is:

L(wi, t) = (R(t) - wi)“,
R(t) = [cos(Bt) sin(t), cos(Bt) cos(t), sin(St)].

For the “structured environment map” pattern, we
project structured light along three axes alternatively. Tak-
ing structured light along the Z axis as an example, the for-
mula of this light source pattern L(w, t) is:

(7

L(w;,t) = Lfmod(R(Qtwi)ﬂ)J ,
atan2(w; - [0, 1, 0], w; - [1,0,0])

®)

+1,

where “fmod” is the modulo operator. ¢ should be integer
and the “structured environment map” pattern is discrete.

Specular coverage requirement. Given metallic (i.e.,
without diffuse part) or even mirror-like objects, it is dif-
ficult to use single distant point light for surface normal
estimation. Because the specular surface only responds to
lighting from a small lobe. For the specular dielectric ma-
terial (i.e., with a diffuse part), the surface normal can be
estimated from the diffuse reflection. However, the material
properties are still only recoverable in the small specular
highlight part. We show rendered images of a shiny ball
under all three lighting setups in the top row of Fig. 2 (a).
The bottom row shows that the solvable regions for “point

light” is a small circle around the lighting direction. In con-
trast, the “moving ring light” and “structured environment
map” have larger solvable regions with a strip around the
ring or structure edges, which is more efficient for specu-
lar coverage. The larger specular coverage results in faster
data-capturing speed for challenging specular surface mate-
rials.

Diffuse sensitivity requirement. Diffuse reflection has the
opposite property from specular reflection: it spreads the
input light to all the upper hemisphere directions instead of
only a small highlight region. In order to estimate surface
normal from the reflection, the light source pattern needs
to contain high and diverse low-frequency parts to make it
distinguishable from different surface normal. As shown in
Fig. 2 (b), we render the images of a rough diffusive ball
under all three lighting setups in the top row, and plot the
reflection intensity of two pixels in the bottom row. The
diffuse reflection of two pixels is shifted in time for “point
light” and “moving ring light” patterns. Since event cam-
eras have an extremely high temporal resolution, the time
shift can be well-captured by the camera and converted to
surface normal accurately. In contrast, the diffuse reflection
intensity profiles for the two pixels are similar for “struc-
tured environment map”’, making it difficult to distinguish
the surface normal of two points.

Event efficiency requirement. Since the event camera
measures the brightness changes, the bandwidth consump-
tion is mainly determined by the brightness changing mag-
nitude in the scene. We show the synthetic event signals and
the accumulated number of events from rendered a mirror-
like ball in Fig. 2 (c). Both “point light” and “moving ring
light” have a similar number of events triggered by differ-
ent surface normal (observed by two pixels). The “moving
ring light” pattern consumes fewer events for specular cov-
erage than the “point light”, indicating a better bandwidth
efficiency. In contrast, the “structured environment map”



leads to a variable number of events across different surface
normal. In the worst case, where there is a mirror plane fac-
ing at the worst surface normal with a maximum number
of events generated, the whole scene is flickering, and the
read-out will be congested.

Based on the comparisons and analysis above, the de-
signed “moving ring light” achieves relatively larger cover-
age of various materials while preserving higher efficiency
of event triggering.

3.3. EventPSR Algorithm

As shown in Fig. 1, we propose a two-stage solving
pipeline, consisting of a grid-matching stage and a gradient-
tuning stage. The proposed algorithm provides a global
minimum result with high value resolution.

Stage-1: Grid-matching. To estimate the surface normal
and reflectance parameters from the captured event streams,
we first render a database containing various intensity-time
curves using a physically-based rendering engine. We as-
sume that the rendered temporal resolution is high enough
so that the intensity curves can be represented by linear
interpolation of a series of frames. There are 4 parame-
ters to be estimated for each pixel, including 2 parame-
ters for surface normal, 1 parameter for roughness, and 1
parameter for metallic. The database is on a 5-dimension
grid (1 additional dimension for time), which is defined as
B={N,R,M,t}.

Given a series of event signals &, , at a pixel (z,y), the
goal in this stage is to find the most matching curve in the
database. Therefore, we define the loss function between
the observed event stream and curve candidates as follows:

Ly(w,y,N,R,M) = > |log(B(N, R, M, 1;,) + )
; ©)
—log(B(N, R, M, ty_y + 1) + €) — prC|%.

By designing the loss function on each pair of events, we
prevent the event integral process, which has an integra-
tion drifting issue (More details about the drifting issue are
shown in the supplementary material). Furthermore, our
loss function averages errors of all events in the same pixel,
implicitly suppressing event triggering noise.

We enumerate 4D surface normal N and material prop-
erties R, M on a discrete grid and select the one with mini-
mum loss. The results N, 1%, M at this stage are as follows:

Ny, Ry, My, = argmin £4(x,y, N, R, M). (10)
R,M

IRag)

Stage-2: Gradient-tuning. The grid-matching stage pro-
vides us with a coarse result close to the global minimum,
but this result can be further improved for the following two
reasons: 1) The resolution of grid-matching stage depends
on the searching grid size. Due to the computational cost,
this resolution is not high enough. 2) In real setup, there
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Figure 3. Data acquisition platform for capturing real data. There
are 5 commodity monitors surrounding the target object to illumi-
nate the designed pattern from any incidence angle. We show the
capture device setup on the left side. The target object is hung in
the middle and an event camera is pointing at the target from the
bottom. Three projected patterns are shown on the right.

are some regions of the environment map that do not have
a display. If the material is shiny, metallic, and the surface
normal is reflecting to the dark region, there is no brightness
change, which leads to ambiguity in these regions. More
details are shown in the supplementary material.

To solve the first problem, we calculate the gradient of
surface normal IN and material properties R, M, and inter-
polate the database on these parameters. In this way, we
obtain an approximated rendered intensity and its gradient
in a continuous parameter space. Therefore, we minimize
the £ (z,y, N, R, M) using gradient descent to get the op-
timized result.

To solve the second problem, we introduce a small inter-
pixel smoothness regularization term:

L2=8Y (Nay — Noo1y[2 + |Nuy — Ny [+
x,y

|Rz7y - Rw—Ly|2 + |Rw7y - Rw,y—1|2+

M., — M 24 My, — M 2 (b
| My e1yl” Mgy zy—1] )

In this way, for shiny and metallic surface, the parameters in
ambiguous regions are filled with interpolated values, while
the diffusive or dielectric surfaces are not affected. The op-
timized parameters of this gradient-tuning are the final re-
sults of EventPSR.

4. Experiments

4.1. Implementation Details

Data acquisition platform. To illuminate the target ob-
ject using our designed light scanning pattern, we build a
data acquisition platform with multiple commodity moni-
tors, as illustrated in Fig. 3. The target object is hanging
at the center of the device and surrounded by several mon-
itors. There is a Prophesee EVK4 event camera beneath
the target object, pointing above at the object and captur-
ing the event stream as the light scanning pattern changes.
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Figure 4. Quantitative comparison on synthetic data. We show the relative data consumption and per-object averaged error for normal,
roughness, and metallic estimation. The color heatmap for each parameter (normal, roughness, and metallic) is normalized independently.
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Figure 5. Quantitative comparison results on synthetic data. We
show the estimated normal, roughness, metallic, and error maps of
EventPSR and two comparing methods. The averaged error maps
are labeled in red numbers.

The light scanning pattern received by the target object is
slightly different from the designed one because of some
non-ideal factors. The uncovered area at the top and bot-
tom will cause some missing illumination, and the inter-
reflection of the monitors will cause some extra light from
the wrong direction. To alleviate the influences caused by
non-ideal light scanning pattern projection, we capture the
received illumination by a mirror ball in the scene. The
database B(IN, R, M, t) is rendered using the calibrated en-
vironment maps. In addition, we flash all panels to full
white at the beginning and end of the illumination pattern
for temporal alignment.

Algorithm implementation. Both of the two stages are im-
plemented using PyTorch [20]. For the grid-matching stage,
the resolution of rendered database B(IN, R, M, t) are as
follows: 64 x 64 for normal resolution, 12 for roughness
resolution, 8 for metallic resolution, and 600 for temporal
resolution. According to Eq. (3), the reflectance model is
a linear interpolation from pure diffuse to pure mirror. To

reduce GPU VRAM consumption, we replace the metal-
lic dimension using 1 pure diffuse component and 1 pure
mirror component. Different material metallic properties
are constructed on the GPU on the fly. Both of the grid-
matching and gradient-tuning stages are conducted on a sin-
gle NVIDIA GeForce RTX 3060 graphics card.

4.2. Dataset

Synthetic data. To evaluate the accuracy of our method
compared with other methods, we render 16 objects using
the geometries from the sculpture dataset [27]. The mate-
rial parameters including albedo, roughness, and metallic,
are set randomly per patch. We use a ray-tracing-based ren-
dering engine, with 1024 samples per pixel and 3 maximum
bounces. The rendered images are of 512 x 512 resolution.

An example is shown in the first column in Fig. 5. Each

of the objects is rendered under 3 different setups: Our il-

lumination with fixed camera position, DiLiGenT10? [22]

light directions with fixed camera position (for the com-

parison with SDM-UniPS [12]), and fixed light direction
with different camera positions (for the comparison with

NelLF [31]). For the first setup, the event streams are sim-

ulated from high-frame-rate image sequences. The event

triggering threshold noise is set to 0.01. For the other two
setups, there are total 100 HDR images rendered per object.

Besides, the independent Gaussian noise of 0.01 standard

variance is added to each image.

Real data. We capture three types of real data using our

data acquisition platform. The captured data are used for

material roughness accuracy evaluation, surface normal ac-
curacy evaluation, and complex object generalization eval-
uation, respectively.

* Surface normal evaluation data: We select several pairs
of objects with almost identical geometry but extremely
different materials (i.e., rough and shiny), as shown in the
first row in Fig. 6. The ground truth of surface normal is
captured by a structured light 3D scanner.*

* Material roughness evaluation data: We create several

“https : / / www . shining3d . com / professional -
solutions/desktop-3d-scanner/einscan-se-v2
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balls with varying surface roughness. A polished metal
ball serves as the low roughness reference. For the high
roughness surface, we apply a spray coating to achieve a
diffuse surface. The ground truth values of roughness are
measured using a frame-based camera with HDR expo-
sure under ideal parallel light.

* Generalization evaluation data: We select multiple ob-
jects whose surface are composed of multiple different
materials, as shown in the first row in Fig. 8. The com-
plexity of the shape and materials will test the generaliza-
tion ability of EventPSR on real-world objects.

Mirror

Rough

Frame Event
image visualization map

Roughness

Figure 7. Quantitative demonstration for robustness of material
estimation on real objects. The first row is a metal ball with mirror-
like surface material. The second row is a ball sprayed with a non-
glossy coating.

4.3. Evaluation on Synthetic Data

We conduct quantitative evaluations of the surface nor-
mal and reflectance parameters estimation with the syn-
thetic dataset. The comparison includes two frame-based
methods [13, 31] that represent the state-of-the-art NeRF-
based [31] and PS-based [13] normal and reflectance es-
timation approaches. For data rate usage comparison, we
estimate the date consumption in the following way: For
EventPSR, we assume that the input event streams employ
16-bit Prophesee EVT 3.0 format. For the other two com-
parison methods, we assume that the HDR input are cap-
tured by merging 3 multi-bracketing 8-bit grayscale images.
We use mean angular error to measure the accuracy of re-
covered normal maps. For the recovered roughness and
metallic, we first standardize the data to avoid representing
differences between models, then we apply mean squared
error (MSE) to measure the accuracy. More details are de-
scribed in the supplementary material.

The data consumption and parameters error of each ob-
ject are shown in Fig. 4. On average, our method consumes
about 30% of the data rate, achieving comparable accuracy
of normal estimation and superior accuracy of roughness
and metallic estimation. We visualize the result of one ex-
ample from the synthetic dataset in Fig. 5. We can see that
the error of our method concentrates mainly on the high ge-
ometry change area for all three parameter maps, where the
inter-reflection and cast shadow are most severe. For the
other two comparing methods [13, 31], the errors of normal
estimation are more evenly distributed. However, the es-
timated roughness and metallic from the comparing meth-
ods [13, 31] can hardly reflect the high frequency of differ-
ent material patches of the target object. More examples are
shown in the supplementary material.

To demonstrate the robustness of EventPSR in recover-
ing various materials, we evaluate the performance of the
three methods on a cow object with 6 different surface ma-
terials, from ideal Lambertion to pure mirror. More details
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Figure 8. Qualitative demonstration of real-world objects. From
left to right, the complexities of shape and material are increas-
ing. EventPSR recovers parameter maps consistently, and pre-
serves high-frequency details for simple and complex objects.

are shown in the supplementary material.

4.4. Evaluation on Real Data

Quantitative evaluation on surface normal estimation.
To demonstrate that EventPSR can estimate the surface nor-
mal of objects with various materials, we select some ob-
jects with identical shape but extremely different surface
materials. As shown in the top part of Fig. 6, the surface
normal estimation results across different materials remain
consistent, with only minor errors. The bottom part of Fig. 6
are the relighting results rendered with the estimated normal
and reflectance parameters under different lighting condi-
tions.” The results demonstrate that EventPSR effectively
handles material variation and maintains accuracy across
different surface types.

Quantitative evaluation on reflectance estimation. To
verify the accuracy of roughness estimation using
EventPSR, we conduct experiments with two semi-spheres

5Objects are rendered with a uniform albedo of white.

featuring distinct roughness levels, as illustrated in Fig. 7.
EventPSR achieves an average MSE of 0.0067 in rough-
ness estimation, showing its high precision and robustness
among different surface materials. The error maps highlight
EventPSR’s capability to differentiate subtle variations in
material roughness, underscoring its robustness across di-
verse reflectance properties.

Qualitative evaluation on real objects. The results of sur-
face normal and reflectance parameters estimation of three
real-world complex objects are shown in Fig. 8. The nose
model in the left column has spatially uniform specular ma-
terial. The estimated surface normal is mostly unaffected
by specular reflection. The estimated roughness and metal-
lic are mostly uniform on the surface. In the middle column,
there is a diffuse cat lying on a black and metallic (mirror-
like) plate. From the estimated result, we can see the low
roughness and high metallic on the outer rim. There is a
splatoon model with complex materials in the right column.
From the image captured by a frame-based camera, we can
see that different parts are in different materials. The eyes,
hair, and backpack have low roughness, while the rough
skin has high roughness. The recovered roughness is con-
sistent with the observation. Besides, the high metallic in
the pipes of the ink gun is also recovered by EventPSR.

5. Conclusion

We propose EventPSR, an efficient and robust approach for
simultaneous estimation of surface normal and reflectance
parameters using an event camera. EventPSR is the first to
use continuous radiance differential signals for joint estima-
tion of shape and material properties, reducing data rate by
30% compared to frame-based methods.

Limitations. The capturing speed is limited by the refresh
rate of the current monitors. The accuracy of real object
results is affected by cast shadow and inter-reflection. De-
spite the robustness of albedo variation, we cannot recover
diffuse albedo. These factors can be improved by employ-
ing a faster device and designing more robust algorithms,
which are described in the supplementary material.
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