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Figure 1. Our event-based active hyperspectral imaging system achieves real-time capture up to 30 FPS as well as 59.53% bandwidth

reduction while maintaining accuracy comparable to frame-based methods. (a) System prototype. (b) Illustration of our working principle.

(c) Reconstructed results in sRGB. (d) Spectral accuracy validation against ground truth. (e) Reconstructed hyperspectral images.

Abstract

Hyperspectral imaging plays a critical role in numerous

scientific and industrial fields. Conventional hyperspectral

imaging systems often struggle with the trade-off between

capture speed, spectral resolution, and bandwidth, particu-
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larly in dynamic environments. In this work, we present a

novel event-based active hyperspectral imaging system de-

signed for real-time capture with low bandwidth in dynamic

scenes. By combining an event camera with a dynamic

illumination strategy, our system achieves unprecedented

temporal resolution while maintaining high spectral fidelity,

all at a fraction of the bandwidth requirements of tradi-

tional systems. Unlike basis-based methods that sacrifice

spectral resolution for efficiency, our approach enables con-



tinuous spectral sampling through an innovative “sweeping

rainbow” illumination pattern synchronized with a rotat-

ing mirror array. The key insight is leveraging the sparse,

asynchronous nature of event cameras to encode spectral

variations as temporal contrasts, effectively transforming

the spectral reconstruction problem into a series of geomet-

ric constraints. Extensive evaluations of both synthetic and

real data demonstrate that our system outperforms state-of-

the-art methods in temporal resolution while maintaining

competitive spectral reconstruction quality.

1. Introduction

Hyperspectral imaging, which captures detailed spectral in-

formation across a wide range of wavelengths, has become

increasingly crucial in applications ranging from remote

sensing [1, 14, 18] to medical diagnostics [5, 26, 50]. Tradi-

tional approaches typically suffer from a dilemma: they must

balance spectral resolution, temporal resolution, and data

bandwidth. While recent advances in computational imaging

have made progress in addressing these challenges, existing

solutions often require compromising among these compet-

ing factors. Specifically, current state-of-the-art methods

broadly fall into three categories: i) scanning-based systems

that achieve high spectral resolution at the cost of temporal

resolution [4, 9, 10, 15, 21, 40], ii) snapshot systems that

sacrifice spectral resolution for speed [31, 55, 59, 60], and

iii) coded aperture approaches that require complex com-

putational reconstruction [2, 22, 53]. Despite their respec-

tive merits, none of these approaches can simultaneously

achieve high temporal resolution, high spectral resolution,

and low bandwidth requirements—a capability increasingly

demanded by emerging applications such as real-time mate-

rial classification and dynamic scene understanding.

Event cameras have recently revolutionized high-speed

imaging by responding to local intensity changes rather than

capturing full frames, offering microsecond temporal res-

olution and high dynamic range [24, 35, 43]. They can

potentially benefit real-time capture of hyperspectral imag-

ing [16]. However, leveraging their advantages for hyper-

spectral imaging presents several fundamental challenges.

i) Spectral information must be reliably encoded into tem-

poral events while maintaining spatial consistency—a task

complicated by motion artifacts and temporal aliasing in

traditional scanning methods. ii) The sparse nature of events

can exacerbate the ill-posedness of spectral reconstruction.

iii) Event cameras’ inherent characteristics—logarithmic

response, non-uniform pixel behavior, and refractory peri-

ods—introduce complex measurement inconsistencies.

In this paper, we propose an active hyperspectral imag-

ing system using an event camera. Our key insight is that

by synchronizing precisely controlled active illumination

with an event camera’s superior temporal resolution, we

can encode spectral information in the temporal domain,

effectively decoupling spectral resolution from temporal res-

olution. Specifically, our system includes a novel optical

design that creates a “sweeping rainbow” effect through a

synchronized rotating mirror array and blazed grating com-

bination. An illustration of our system’s working principle

using “sweeping rainbow” illumination to create temporal

events encoding spectral information is shown in Fig. 1(b),

where the scene contains objects with distinct single-peak

spectral responses. This design integrates the cutting-edge

features of event cameras, successfully transforming the

complex problem of spectral reconstruction into a series

of geometric constraints derived from event temporal in-

formation. Our mathematical framework shows that each

event provides information about the underlying spectral

distribution. Together with the usage of SVD and tailored

constraints on the spectral solution, our method achieves

robust reconstruction even with sparse temporal sampling

and measurement inconsistencies in the event camera.

Our approach offers three fundamental advantages: i)

microsecond-scale temporal resolution inherited from event

cameras, enabling the capture of rapid spectral phenom-

ena; ii) dramatic reduction in data bandwidth through

sparse, asynchronous event representation; and iii) basis-

independent spectral resolution, limited only by optical de-

sign rather than computational constraints. These make our

method excel in applications demanding simultaneous high

temporal and spectral resolution.

Our main technical contributions include:

• a novel active illumination strategy that enables continuous

spectral sampling through precise synchronization with

event-based sensing;

• a mathematical framework that reformulates the spectral

reconstruction problem as a geometric constraint optimiza-

tion problem; and

• an efficient solver that leverages physical prior derived

from events for spectral reconstruction.

Through extensive experiments on both synthetic and real

data, we demonstrate that our system achieves 59.53 % re-

duction in data bandwidth compared to traditional frame-

based approaches. A comprehensive characterization of

system performance and limitations is also conducted. Our

approach enables the real-time capture (up to 30 FPS) of

dynamic spectral phenomena with unconstrained spectral res-

olution, opening new possibilities in fields where real-time

capture of spectral changes and minimal data bandwidth are

essential.

2. Related Work

Hyperspectral imaging. Hyperspectral imaging systems

have traditionally involved scanning the scene across either

the spatial [4, 10, 40] or spectral [9, 15, 21] dimensions

for passively capturing reflectance across different spectral



bands. Techniques such as spectral filters [41, 55], filter

wheels [8], and tunable filters [9, 12, 15, 51] have been

widely used to separate incoming light into distinct spec-

tral components. However, these methods typically rely on

sequential scanning, which significantly limits their tempo-

ral resolution and dynamic sensing capability, often leading

to motion artifacts and spectral misalignment. Some meth-

ods leverage coded aperture [20, 45], disperser [2, 31], or

both [22, 25, 53, 58–60] to form a Coded Aperture Snap-

shot Spectral Imaging (CASSI) system, achieving computa-

tional hyperspectral imaging from a subset of measurements.

While offering faster acquisition speeds, they face challenges

in terms of hardware complexity, versatility, and spectral ac-

curacy. Moreover, researchers have explored alternative

active illumination schemes [17, 23, 37, 46, 52, 54, 56] to

reach a balance. Park et al. [37] showed multiplexed illu-

mination could boost independent measurements using mul-

tiple light sources and camera channels. Similarly, Chi et

al. [7] proposed optimized wide-band filtered illumination

to maximize signal and minimize ambient light influence.

Recently, Shin et al. [46] developed a hyperspectral imag-

ing system based on dispersed structured light, utilizing a

diffraction grating to achieve hyperspectral 3D imaging with

higher spectral resolution than filter-based methods. The

current landscape of hyperspectral imaging systems high-

lights the need for approaches that effectively address the

inherent trade-offs between spectral resolution, temporal

efficiency, and adaptability. Our proposed system extends

previous works by combining active dispersive illumination

with event-based imaging in a novel manner.

Event-based vision. Event cameras have reshaped imag-

ing by enabling real-time data acquisition and robust per-

formance in dynamic scenes. They can be used not only

to directly reconstruct intensity videos [35, 36, 39, 42] or

color videos [27, 30, 33, 44], but also to assist frame-based

cameras in tasks like deblurring [48], high-frame-rate [49]

and high-dynamic-range [29] imaging. Also, event cameras

have improved deblurring in snapshot mosaic hyperspectral

imaging [13]. In active lighting scenarios, event cameras

capture rapid illumination shifts to enhance scene perception.

Structured and intensity-varying lighting approaches trigger

events for various applications. Structured lighting projects

patterns onto objects, with event cameras capturing spatial

disparities for 3D shape reconstruction [28]. High-speed dig-

ital light projection [19] facilitated 3D surface reconstruction

through digital image correlation. ESL [34] synchronized

projector and camera events, reducing noise in structured

light applications. Besides structured light, researchers use

light sources with intensity changes to trigger event signals.

Morgenstern et al. [32] employed lookup tables for efficient

real-time depth estimation under structure light. Takatani et

al. [47] leveraged bispectral photometry under modulated

light, enabling depth and concentration estimation in tur-
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Figure 2. Illustration of our system. Our system combines a point

light source, optical elements (convex lenses, vertical slit, and cylin-

drical lens), and a blazed grating to create a “sweeping rainbow”

effect across the scene. The scattered light is collected through a

beam-splitter and light panel arrangement before being captured

by an event camera. This design enables rapid spectral scanning

of the scene through the rotating mirror array’s continuous motion,

whose temporal brightness changes are rapidly captured by the

event camera with microsecond-level resolution.

bid media. EventPS [57] estimates the surface normal by

analyzing the events triggered by a continuously rotating

light source. Transient light triggers are employed [6, 16]

to resolve intensity-distance ambiguity and capture radiance

variations. Bajestani et al. [3] reconstructed color events with

adaptive structured lighting, achieving an effective 1400 FPS

with a monochrome event camera. Despite these advanced

developments, active hyperspectral imaging with event cam-

eras remains an unexplored area.

3. Method

3.1. Imaging Setup

Optical architecture. Our system adopts spectral decom-

position to analyze different wavelengths of light from a

scene, combining spatial scanning (via the rotating mirror

array) with spectral separation (via the blazed grating) to

build a complete hyperspectral data cube. Our system con-

sists of three key components: a point light source with a

convex lens for collimation, a rotating mirror array, and a

blazed grating, synchronized for spectral separation. This

configuration creates a “sweeping rainbow” effect that sys-

tematically maps spectral information to temporal variations.

Fig. 1(a) shows the real capture prototype, and Fig. 2 shows

how the optical path creates the spectral separation and how



the rotating mirror array facilitates the spatial scanning of

the scene, with the rainbow pattern illustrating the spectral

decomposition process.

The optical path begins with a collimated beam passing

through a vertical slit, which is then directed through a series

of convex and cylindrical lenses. This vertically parallel

light interacts with the blazed grating, creating a wavelength-

dependent angular dispersion. The rotating mirror array,

positioned at the system’s core, continuously redirects the

dispersed light at precisely controlled angles. This process

results in a temporally varying spectral illumination pattern

that dynamically sweeps across the scene.

Temporal-spectral encoding. The key insight of our de-

sign is that the rotating mirror array creates a deterministic

illumination pattern, which establishes the relationship be-

tween wavelength ¼ and time Ä . For a pixel x, y in the

scene, the incoming spectral radiance Lx,y(¼, Ä) from our

illumination device is a function as follows:

Lx,y (¼, Ä) = T (¼+ ´É (Ä + Ä̂x)) , (1)

where T is the spectral radiance of the narrow-band dis-

persed light, É is the illumination pattern rotation speed

(half of the mirror rotation speed), Ä̂x is the initial time offset

depending on the horizontal coordinate of the pixel, and ´

is a coefficient describing the width of the rainbow in the

unit of nanometer per rad. This relationship enables us to en-

code high-dimensional spectral information into a temporal

sequence that can be efficiently captured by an event camera.

3.2. Problem Formation

Event formation model. Event cameras capture scene ra-

diance changes on a logarithmic scale. Each pixel measures

the radiance changes asynchronously. When the changes of

logarithmic radiance at the pixel x, y reaches a triggering

threshold C, an event {x, y, Ã, Ä} will be triggered, where Ä

is the timestamp, and Ã ∈ {−1,+1} is the polarity represent-

ing the decrease or increase of radiance. Assume there are

totally K events triggered at pixel x, y during an illumination

cycle. These events are represented as Ex,y = {x, y, Ãk, Äk},

where k = {1, 2, ...,K}. The change of radiance value in

pixel x, y from Äk−1 to Äk becomes:

log(Ix,y(Äk) + ϵ) = log(Ix,y(Äk−1 + ¸) + ϵ) + ÃkC, (2)

where ϵ is a small offset value to avoid taking the logarithm

of zero, and ¸ is the refractory time of the pixel [11]. In our

system, these intensity changes are induced by the sweeping

spectral illumination. Combining the event generation model

with our spectral illumination pattern, we can express the

relationship between events and spectral content.

Hyperspectral imaging model. Assuming that there is an

object illuminated by an ideal white point light source, which

exhibits a flat spectrum curve in the visible light range. For

a pixel x, y under spectrum ¼, the hyperspectral image pixel

intensity Sx,y(¼) has the following formula:

Sx,y(¼) = Rx,y(¼)E(¼), (3)

where Rx,y(¼) is the reflectance of pixel x, y, and E(¼) is

the spectral radiance of the ideal white light source shared by

all the image plane. Here we assume that the material is non-

fluorescent to allow each spectrum be treated independently,

omit inter-reflection and sub-surface scattering to have each

pixel be treated independently.

To capture spectrally relevant information using a

monochromatic event camera, we design the illumination

pattern Lx,y(¼, Ä) that varies along both wavelength and

time as shown in Eq. (1). For a pixel x, y, the observed

intensity Ix,y(Ä) at time Ä is determined by the interaction

between the scene’s spectral reflectance and our time-varying

illumination Lx,y(¼, Ä) as follows:

Ix,y(Ä) =

∫

λ

D(¼)Rx,y(¼)Lx,y(¼, Ä)d¼

=

∫

λ

D(¼)Sx,y(¼)
Lx,y(¼, Ä)

E(¼)
d¼,

(4)

where D(¼) denotes the camera spectral response curve

shared by all positions, and Sx,y(¼) represents the hyper-

spectral image, which is our reconstruction target.

Therefore, the event-based active hyperspectral imaging

estimation task can be formularized as: by designing the

changing light source function Lx,y(¼, Ä), given the events

captured by an event camera, estimate the hyperspectral

image Sx,y(¼) as if it is illuminated by an ideal white point

light source.

3.3. Event­Based Spectral Reconstruction

In order to estimate the continuous hyper-spectrum im-

age function Sx,y(¼) in a numerical way, the continuous

equation should be discretized for practical implementation.

Specifically, we separate the spectral response over the vis-

ible spectrum into a discrete set S = [¼1, ¼2, ..., ¼M ] of M

centered wavelengths sampled from 400 nm to 760 nm with

¶ = 360
M

nm interval. Then we can rewrite Eq. (4) into a

discrete form:

Ix,y(Ä) =
∑

m

Sx,y,m

∫ λm+δ

λm

D(¼)
Lx,y(¼, Ä)

E(¼)
d¼. (5)

Denote the right part that can be pre-calibrated as:

Ax,y,m(Ä) =

∫ λm+δ

λm

D(¼)
Lx,y(¼, Ä)

E(¼)
d¼, (6)

then we have

Ix,y(Ä) =
∑

m

Ax,y,m(Ä)Sx,y,m (7)

For the sake of simplicity, we convert the M dimension of

Sx,y,m and Ax,y,m(Ä) into vectors x ∈ R
M and aτ ∈ R

M .

Also, we only focus on one pixel and omit the subscript x, y

in the following sections. The problem can be simplified



using the dot product

I(Ä) = aτ · x, (8)

at each pixel x, y and moment Ä .

Null spectrum vector for spectral-temporal mapping. Re-

call that for each pixel x, y, events are triggered when loga-

rithmic intensity changes exceed threshold C. To see what

each pair of events reveals about the hyper-spectrum image,

we combine Eq. (8) with Eq. (2) (omitting the non-ideal bias

and refractory time) to get the following equation for each

pair of events triggered at timestamps Äk, Äk−1:

aτk · x = eCσkaτk−1
· x. (9)

We denote all the components besides x as follows:

nk = aτk − eCσkaτk−1
. (10)

All the components in nk are either calibrated in advance,

or extracted from the event stream. Then we can see that

nk ∈ R
M is perpendicular to x because their dot product is

0, i.e.,

nk · x = 0. (11)

Here, we name the vector nk as null spectrum vector.

The event-triggered constraints provide a series of equa-

tions Eq. (9) that relate consecutive measurements. Each

pair of events generates a null spectrum vector n̂k according

to equation Eq. (10), forming the basis of our reconstruction

approach.

Spectral reconstruction from augmented null spectrum

vectors. Null spectrum vector provides information about

the spectrum shape of the target image S(¼). However, the

absolute value of the image is still ambiguous. To solve this

problem, we add a direct light to the sensor and propose the

following augmented null spectrum vector.

The event signal captured previously lacks absolute in-

tensity because the event only provides a relative intensity

ratio between a pair of timestamps. To introduce the abso-

lute intensity value into the event signal, we add a constant

intensity value c to the sensor. This addition is achieved by

putting a beam splitter and another constant planner light in

front of the event camera. The captured intensity Î(Ä) with

this constant light has the following formula:

Î(Ä) = aτ · x+ c =

[

x

1

]

·

[

aτ

c

]

. (12)

By concatenating another dimension with the added con-

stant light intensity c, we achieve the augmented null spec-

trum vector n̂k as:

x̂ · n̂k = 0, (13)

where

x̂ =

[

x

1

]

, and n̂k =

[

ak

c

]

− eσkC

[

ak−1

c

]

. (14)

The events Ex,y triggered at pixel x, y over time within the

static state of the scene can build up a system of constraints.

Denote matrix N̂ ∈ R
K×(M+1) the matrix whose rows

are M + 1 dimensional augmented null spectrum vectors

n̂k, k = 1, 2, ...,K. We can calculate x by solving the least

square minimization problem

x∗ = argmin
x
∥N̂x̂∥2. (15)

The weight of hyper-spectrum image x can be calculated by

performing SVD, selecting the singular vector corresponding

to the minimum singular value, and normalizing it according

to the last dimension. However, there are three problems if

deploying the SVD solution directly:

• The SVD solution contains negative values, while all inten-

sities should be positive. The SVD method tends to form a

zero-crossing point around frequent events to reduce over-

all error. As a result, solutions containing zero-crossing

points are mostly all wrong.

• The augmented null spectrum vectors n̂k only provide rela-

tive intensity relations among event triggering timestamps.

When there is a long gap between the event triggering time,

there are no restrictions for the intensity value between the

two endpoint timestamps. Drastically changing intensity

between the gaps violates the event triggering model.

• For dark pixels or pixels with flat spectrum (white color).

There are fewer events generated than the number of bases.

The matrix from augmented null spectrum vectors n̂k is

degraded, and there are infinite solutions in this case.

To solve the first SVD negative value problem, we in-

troduce another set of inequality constraints S(¼) g 0, ∀¼,

which can be written as:

xm g 0, m = 1, 2, ...,M (16)

which convert the linear least square minimization prob-

lem Eq. (15) into a quadratic programming (QP) problem.

To solve the second long-event-gap hallucinations prob-

lem, we introduce a regularization term to suppress drastic

intensity drift in the gap of a pair of events. This regulariza-

tion term adds an L2 penalty to the intensity values between

two events and the linear interpolation between each pair of

events as follows:

Rint =
∑

k

∑

τ∈(τk−1,τk)

((aτ − a′
τ ) · x)

2,
(17)

where

a′
τ =

Äk − Ä

Äk − Äk−1
aτk−1

+
Ä − Äk−1

Äk − Äk−1
aτk . (18)

To solve the third matrix degraded problem, we intro-

duce another regularization term to suppress high-frequency

changes in the spectrum as follows:

Rspec =
∑

k∈[Mstart,M ]

(fk · x)2, (19)

where fk =
[

cos 1.5kπ
M

, cos 2.5kπ
M

, ..., cos kπ(M+0.5)
M

]¦

,

and Mstart represents the frequency to start adding penalty.

To summarize, given a set of events at pixel x, y over time,
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Figure 3. Influence of different constraints on spectral reconstruc-

tion quality. Four variants are compared: (a) without non-negative

constraints, showing physically implausible negative spectral values

(SAM: 30.23, PSNR: 26.62); (b) without low-frequency prior, re-

sulting in high-frequency artifacts (SAM: 30.97, PSNR: 26.42); (c)

with reduced anti-drift constraints, exhibiting temporal instability

(SAM: 26.28, PSNR: 27.81); and (d) our full method incorporating

all constraints, achieving the most accurate and stable reconstruc-

tion (SAM: 13.42, PSNR: 33.60).

the spectral reconstruction in Eq. (15) can be reformulated

as a constrained optimization problem:

min
x

(

∥N̂x̂∥22 + ³intRint(x) + ³specRspec(x)
)

,

subject to : xm g 0, m = 1, 2, ...,M,
(20)

where Rint(x) is a sparsity regularizer addressing measure-

ment noise, Rspec(x) is a smoothness regularizer promoting

spectral continuity, ³int, ³spec are regularization parameters.

Fig. 3 illustrates the critical role of different constraints in

our reconstruction pipeline. The ablation study demonstrates

that non-negative constraints prevent physically impossible

negative spectral values, while low-frequency priors sup-

press high-frequency artifacts. Anti-drift constraints ensure

temporal stability.

3.4. Calibration

Calibration is crucial for reliable hyperspectral reconstruc-

tion. Our system requires the calibration of several param-

eters: the time-varying spectral intensity of the sweeping

rainbow illumination L(¼, Ä), the constant illumination c,

the event camera’s spectral response curve D(¼), and the

event triggering threshold C. A detailed description of the

calibration procedure of c, D(¼), and C can be found in the

supplementary, while the calibration of L(¼, Ä) is as follows.

We decompose the calibration of L(¼, Ä) into two sub-

problems using a laser point as a temporal-spatial reference.

The laser beam, being reflected by the same mirror array,

maintains a fixed relative position to the sweeping rainbow

strip. First, the temporal relationship between the rainbow

strip arrival and event triggering at each pixel is established.
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Figure 4. Temporal evolution of spectral illumination patterns of

our system. Different narrow-band illuminations are projected to

different locations of the scene, forming a sweeping rainbow strip

pattern. Spectral characteristics of the broadband light source and

reconstructed hyper-spectral imaging range are also elaborated.

Assuming vertical alignment of the projected rainbow strip,

pixels in the same column experience identical temporal pat-

terns. We track the laser point position at the scene’s bottom

edge to determine these temporal relationships. Second, we

characterize the spectral intensity distribution across time by

operating the mirror array at a constant, low angular velocity

while recording spectral measurements with a spectrometer.

By modulating the laser between on and off during measure-

ment and correlating with detected laser positions, we obtain

a comprehensive mapping of spectral intensity variations

across both time and wavelength. The real-world spectral

radiance captured from our modulated illumination pattern is

shown in Fig. 4, along with the input lamp spectral radiance

and the position mapping to the rainbow strip.

4. Experiments

4.1. Implementation Details

Our prototype system employs an IMX636 event camera as

the primary sensor. Illumination is provided by a high-power

xenon lamp, which delivers the broad spectral coverage and

intensity stability necessary for reliable hyperspectral mea-

surements. To establish a stable baseline illumination level,

we utilize an iPhone 7’s LCD display with DC dimming ca-

pability, eliminating potential temporal artifacts from screen

flicker. The rotating mirror array operates at two distinct

speeds: 180 rpm for static scene capture, and 600 rpm for

dynamic scenes, enabling hyperspectral video capture at

10 frames per second. Our spectral reconstruction pipeline

estimates 72 discrete channels spanning 400 − 760 nm at

5 nm intervals, providing detailed coverage of the visible

spectrum. Details of the algorithm are in the supplementary.

4.2. Experimental Protocol

Ground truth acquisition. Ground truth spectral measure-

ments are obtained using a calibrated EBA NH8 hyperspec-

tral camera, capable of measuring spectra from 380-1000 nm.

These measurements are conducted under the same xenon



lamp used in our system, allowing direct calculation of sur-

face reflectance spectra for validation. The measurements

are spatially registered with our reconstructions.

Data simulation. Our synthetic dataset generation pipeline

simulates the complete optical and sensing characteristics of

the system, including the non-ideal narrow-band illumina-

tion pattern, non-ideal event triggering, and frame camera

imaging noises. More details can be found in the supplemen-

tary material.

Compared methods. We evaluate the proposed sys-

tem against the following baselines: i) Full-bandwidth

frame-based method. ii) Bandwidth-matched frame-based

method. iii) Parkkinen basis method [38]. iiii) CASSI-based

method [25, 58]. More details can be found in the supple-

mentary material.

4.3. Comparison Results

High-frequency spectral feature recovery. We first evalu-

ate our method’s capability to recover high-frequency spec-

tral features using a challenging rainbow pattern (Fig. 5).

This test case is particularly demanding as it contains sharp

spectral transitions and narrow-band features that are difficult

to capture with traditional methods. As shown in Fig. 5(a-d),

basis-based methods struggle to accurately represent these

sharp spectral features, exhibiting significant smoothing arti-

facts. While the full-bandwidth frame-based method (1200

frames) captures these features accurately, it requires sub-

stantial data bandwidth, 100 times compared to ours. The

bandwidth-matched frame-based method, operating under

the same data constraints as our approach, shows degraded

performance due to temporal undersampling. Our method

( Fig. 5(b)) successfully recovers the sharp spectral transi-

tions while maintaining high spatial fidelity. The spectral

profiles in Fig. 5(i) demonstrate that our approach achieves

acceptable accuracy using significantly low bandwidth. This

superior performance stems from our event-based encod-

ing scheme, which efficiently captures temporal changes in

spectral information.

We also compare our method with CASSI-based meth-

ods [25, 58] and evaluate the event efficiency comparing

frame-based methods with our method. More details can be

found in the supplementary material.

4.4. Evaluation on Synthetic Data

Evaluation on a ColorChecker. We conduct a systematic

evaluation using a standard ColorChecker chart (Fig. 6),

which provides a diverse set of well-characterized spectral

signatures. The quantitative results show that our method

achieves an RMS error of 0.204, SAM of 21.05, and PSNR

of 28.46 on average across all 24 patches, with particularly

strong performance in regions of smooth spectral variation.

The reconstructed spectra (Fig. 6, bottom) demonstrate our

method’s ability to accurately recover both broad and nar-
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Figure 5. Comparative analysis of spectral reconstruction on a

high-frequency rainbow pattern. Compared methods include (a)

ground truth, (b) ours (SAM: 23.27, PSNR: 24.61, SSIM: 0.40),

(c) basis-based method (SAM: 25.97, PSNR: 23.79, SSIM: 0.68),

(d) bandwidth-matched frame-based method (SAM: NaN, PSNR:

18.73, SSIM: 0.14), with corresponding hyperspectral visualiza-

tions (e-h). Spectral profiles (i) validate our method’s superior per-

formance over the bandwidth-full and bandwidth-matched frame-

based method.

row spectral features. The error analysis reveals that our

approach maintains consistent accuracy across different spec-

tral patterns, with slightly higher uncertainty in regions of

flat spectral curves.

Evaluation on metameric samples. To evaluate our sys-

tem’s ability to distinguish subtle spectral differences, we

analyze metameric samples of real and fake daisies (Fig. 7).

Our method successfully captures the subtle spectral dif-

ferences between the metameric pairs (Fig. 7(b)), demon-

strating sensitivity to fine spectral features that are crucial

for material classification applications. The full hyperspec-

tral reconstruction (Fig. 7(c)) shows consistent performance

across the entire spatial field.

4.5. Evaluation on Real Data

Evaluation on static scene. The real-world performance

of our system is demonstrated through comprehensive static

scene captures (Fig. 1). Our prototype achieves 59.53%

bandwidth reduction compared to traditional frame-based

systems while maintaining comparable accuracy (Fig. 1(d)).

The reconstructed hyperspectral images (Fig. 1(c,e)) show
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Figure 6. Evaluation on a ColorChecker. Our method achieves

21.05 SAM and 28.46 PSNR on average across all 24 patches. Top:

Spectral accuracy evaluation in terms of RMS error and error bar

from 14 measurements, where 2,500 pixels are used in evaluation

for each patch. The blue column indicates the mean RMS error.

Bottom: Reconstructed spectra of all 24 patches, where solid lines

are ours, and the dashed lines are ground truth.
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Figure 7. Evaluation on metameric samples of fake (left) and real

(right) daisies. Our method achieves 10.8 SAM and 34.95 PSNR

on average. (a) The reconstructed hyperspectral image in sRGB.

(b) Spectra of metameric samples against ground truth measure-

ments, highlighting the system’s ability to capture subtle spectral

differences. (c) Estimated hyperspectral images.

excellent agreement with ground truth measurements at rep-

resentative points.

Evaluation on dynamic scene. A key advantage of our

approach is its ability to capture dynamic spectral phenom-

ena. Fig. 8 demonstrates this capability through the capture

of an iridescent paper in motion. The system achieves a tem-
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Figure 8. Real-time hyperspectral imaging on a moving irides-

cent sticker paper. Top: Three consecutive estimated hyperspectral

images rendered in sRGB captured within 0.3 s. Bottom: Corre-

sponding estimated hyperspectral images.

poral resolution of 10 FPS while maintaining high spectral

fidelity, enabling the observation of rapid spectral changes

that would be impossible to capture with traditional systems.

5. Conclusion

In this paper, we present the first event-based hyperspectral

imaging system. By encoding spectral data through temporal

contrast, our approach leverages the sparse, asynchronous

nature of event cameras to achieve dramatic bandwidth re-

ductions while maintaining high spectral and temporal reso-

lution. The system demonstrates that breaking the resolution-

bandwidth trade-off is possible through careful co-design of

optical hardware and computational algorithms. Experimen-

tal results demonstrate that our approach enables real-time

capture of dynamic spectral phenomena with unconstrained

spectral resolution, achieving performance comparable to

frame-based methods with only 40.47% of the data.

Limitations. Currently, the inter-reflection, scattering, and

fluorescence of the material are not modeled. They will

affect spectral estimation accuracy. The system requires

precise optical calibration and the algorithm implementation

still has room to speed up. Future work could address these

limitations by improving optical systems or introducing deep

learning techniques.
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Peres, Raul Morais, and Joaquim Joao Sousa. Hyperspectral

imaging: A review on uav-based sensors, data processing and

applications for agriculture and forestry. Remote Sensing, 9

(11):1110, 2017. 2

[2] Seung-Hwan Baek, Incheol Kim, Diego Gutierrez, and Min H

Kim. Compact single-shot hyperspectral imaging using a

prism. ACM Transactions on Graphics, 36(6):1–12, 2017. 2,

3

[3] Seyed Ehsan Marjani Bajestani and Giovanni Beltrame.

Event-based rgb sensing with structured light. In Pro. of

IEEE/CVF Winter Conference on Applications of Computer

Vision, pages 5447–5456, 2023. 3

[4] Robert W Basedow, Dwayne C Carmer, and Mark E Ander-

son. Hydice system: Implementation and performance. In

Imaging Spectrometry, pages 258–267, 1995. 2

[5] Mihaela Antonina Calin, Sorin Viorel Parasca, Dan Savastru,

and Dragos Manea. Hyperspectral imaging in the medical

field: Present and future. Applied Spectroscopy Reviews, 49

(6):435–447, 2014. 2

[6] Zehao Chen, Qian Zheng, Peisong Niu, Huajin Tang, and

Gang Pan. Indoor lighting estimation using an event camera.

In Proc. of Computer Vision and Pattern Recognition, pages

14760–14770, 2021. 3

[7] Cui Chi, Hyunjin Yoo, and Moshe Ben-Ezra. Multi-spectral

imaging by optimized wide band illumination. International

Journal of Computer Vision, 86(2):140, 2008. 3

[8] Jason M Eichenholz, Nick Barnett, and Dave Fish. Sequential

filter wheel multispectral imaging systems. In Applied In-

dustrial Optics: Spectroscopy, Imaging and Metrology, page

ATuB2, 2010. 3

[9] Jianan Fang, Kun Huang, Ruiyang Qin, Yan Liang, E Wu,

Ming Yan, and Heping Zeng. Wide-field mid-infrared hyper-

spectral imaging beyond video rate. Nature Communications,

15(1):1811, 2024. 2, 3

[10] James E Fowler. Compressive pushbroom and whiskbroom

sensing for hyperspectral remote-sensing imaging. In Proc.

of International Conference on Image Processing, pages 684–

688, 2014. 2

[11] Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara

Bartolozzi, Brian Taba, Andrea Censi, Stefan Leutenegger,

Andrew J Davison, Jörg Conradt, Kostas Daniilidis, et al.

Event-based vision: A survey. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 44(1):154–180, 2020. 4

[12] Nahum Gat. Imaging spectroscopy using tunable filters: A

review. Wavelet Applications VII, 4056:50–64, 2000. 3

[13] Mengyue Geng, Lizhi Wang, Lin Zhu, Wei Zhang, Ruiqin

Xiong, and Yonghong Tian. Event-enhanced snapshot mosaic

hyperspectral frame deblurring. IEEE Transactions on Pattern

Analysis and Machine Intelligence, pages 1–18, 2024. 3

[14] Ying Guo, Bin Fan, Yan Feng, Xiuping Jia, and Mingyi He.

Distribution-aware and class-adaptive aggregation for few-

shot hyperspectral image classification. IEEE Transactions

on Geoscience and Remote Sensing, 62:1–16, 2024. 2

[15] Neelam Gupta, Rachid Dahmani, and Steve Choy. Acousto-

optic tunable filter based visible-to near-infrared spectropo-

larimetric imager. Optical Engineering, 41(5):1033–1038,

2002. 2, 3

[16] Jin Han, Yuta Asano, Boxin Shi, Yinqiang Zheng, and Imari

Sato. High-fidelity event-radiance recovery via transient event

frequency. In Proc. of Computer Vision and Pattern Recogni-

tion, pages 20616–20625, 2023. 2, 3

[17] Shuai Han, Imari Sato, Takahiro Okabe, and Yoichi Sato.

Fast spectral reflectance recovery using DLP projector. In-

ternational Journal of Computer Vision, 110:172–184, 2014.

3

[18] Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang,

Antonio Plaza, and Jocelyn Chanussot. SpectralFormer: Re-

thinking hyperspectral image classification with transformers.

IEEE Transactions on Geoscience and Remote Sensing, 60:

1–15, 2021. 2

[19] Xueyan Huang, Yueyi Zhang, and Zhiwei Xiong. High-speed

structured light based 3D scanning using an event camera.

Optics Express, 29(22):35864–35876, 2021. 3

[20] Daniel S. Jeon, Seung-Hwan Baek, Shinyoung Yi, Qiang Fu,

Xiong Dun, Wolfgang Heidrich, and Min H. Kim. Compact

snapshot hyperspectral imaging with diffracted rotation. ACM

Trans. Graph., 38(4), 2019. 3

[21] David B Kelley, Anish K Goyal, Ninghui Zhu, Derek A Wood,

Travis R Myers, Petros Kotidis, Cara Murphy, Chelsea Geor-

gan, Gil Raz, Richard Maulini, et al. High-speed mid-infrared

hyperspectral imaging using quantum cascade lasers. In

Chemical, Biological, Radiological, Nuclear, and Explosives

(CBRNE) Sensing XVIII, pages 19–28, 2017. 2
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