
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

MILO: Multi-bounce Inverse Rendering for
Indoor Scene with Light-emitting Objects

Bohan Yu, Siqi Yang, Xuanning Cui, Siyan Dong, Baoquan Chen, Fellow, IEEE
Boxin Shi, Senior Member, IEEE

Abstract—Recently, many advances in inverse rendering are achieved by high-dimensional lighting representations and differentiable
rendering. However, multi-bounce lighting effects can hardly be handled correctly in scene editing using high-dimensional lighting
representations, and light source model deviation and ambiguities exist in differentiable rendering methods. These problems limit the
applications of inverse rendering. In this paper, we present a multi-bounce inverse rendering method based on Monte Carlo path
tracing, to enable correct complex multi-bounce lighting effects rendering in scene editing. We propose a novel light source model that
is more suitable for light source editing in indoor scenes, and design a specific neural network with corresponding disambiguation
constraints to alleviate ambiguities during the inverse rendering. We evaluate our method on both synthetic and real indoor scenes
through virtual object insertion, material editing, relighting tasks, and so on. The results demonstrate that our method achieves better
photo-realistic quality.

Index Terms—Inverse Rendering, Intrinsic Image Decomposition, Multi-bounce.

F

1 INTRODUCTION

INVERSE rendering is desired in many computer vision
and graphics applications, such as novel view synthesis,

virtual object insertion, material editing, relighting, and so
on. With light source and material information recovered
through inverse rendering, these applications can be ac-
complished by re-rendering with photorealistic quality. Tra-
ditional intrinsic image decomposition methods formulate
the inverse rendering problem as decomposing photographs
into reflectance and shading maps [3], [40], [49]. Modern
lighting estimation methods represent incident light by
spherical harmonics [55], spherical Gaussian [25] models,
multi-layer perceptron [30], or voxel-like structures [41],
[48]. General Bidirectional Reflectance Distribution Function
(BRDF) models are also introduced to inverse rendering to
represent more realistic reflectance [1], [11], [17].

However, inverse rendering approaches via intrinsic im-
age decomposition and lighting estimation have a common
limitation: Only the last bounce reflection is calculated in
rendering, while multi-bounce lighting effects are repre-
sented by the incident lighting models. Applications that
require post-editing the reconstructed scene also change

• B. Yu and B. Shi are with the National Engineering Research Center
of Visual Technology, School of Computer Science, Peking University,
Beijing 100871, China.
E-mails: ybh1998@pku.edu.cn, shiboxin@pku.edu.cn.

• S. Yang is with the Institute for Artificial Intelligence, Peking University,
Beijing 100871, China.
E-mail: yousiki@pku.edu.cn.

• X. Cui is with the AI Innovation Center, School of Computer Science,
Peking University, Beijing 100871, China.
E-mail: cxn@pku.edu.cn.

• S. Dong is with the Interdisciplinary Research Center, Shandong Univer-
sity, Shandong 250100, China.
E-mail: siyandong.3@gmail.com.

• B. Chen is with the School of Intelligence Science and Technology, Peking
University, Beijing 100871, China.
E-mail: baoquan@pku.edu.cn.

• Corresponding author: B. Shi.

Virtual Light
Source

Scene Light
Source

Complex
Cast Shadow

Virtual Light
Illumination

Virtual Object

Multi-bounce
Effect

Virtual Object

Fig. 1. Three virtual balls (light-emitting, specular, and diffuse) are in-
serted into a real indoor scene. MILO renders photo-realistic images by
reasonably demonstrating complex cast shadows, multi-bounce effect
between scene objects and virtual objects, and virtual light illumination.
For example, the specular reflection of the ceiling light is partially oc-
cluded by the diffuse ball. The green light source also illuminates the
walls and the ceiling to green, which is reflected by the specular ball.

lighting, e.g., lighting is changed directly in relighting
tasks and indirectly in virtual object insertion or mate-
rial editing tasks. These changes can hardly be applied
to high-dimensional lighting representations. Existing ap-
proaches [30], [42] usually implement these tasks by ig-
noring complex cast shadow, virtual light illumination, and
some multi-bounce effects, which result in unrealistic post-
edited images.

Physically-based Monte Carlo path tracing [22], [24],
[32], [54] is able to take multi-bounce into consideration
and simulate light transport more precisely. However, ap-
plying path tracing to inversely rendering light sources
and materials from images is a challenging task. Challenge
i): Inverse rendering requires a light source model that is
able to describe physically light-emitting objects (instead of
an intermediate lighting representation), the model should
be directly visible. However, existing light source models,
such as point light, directional light, spotlight, and envi-
ronment map, do not satisfy these requirements; Challenge

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

ii): Path tracing introduces a larger number of unknown
variables than single-bounce methods, which cause three
ambiguities in inverse rendering: 1) multi-bounce ambiguity
(each bounce has a different surface material), 2) emission-
diffuse ambiguity (direct emission and reflection are hardly
distinguishable from appearance), and 3) specular uncer-
tainty (there are regions in which specular reflection is not
observed in any of the input images). Due to these ambigu-
ities, different combinations of light sources and materials
can produce the same appearance and lead to errors in re-
rendering edited scenes.

To conquer the above two challenges, we propose
MILO: Multi-bounce Inverse rendering for indoor scene
with Light-emitting Objects, consisting of MILO-Renderer
and MILO-Net. Our method is based on modern Monte
Carlo path tracing to render complex multi-bounce lighting
effects. For the light source, we propose a novel physically-
based light-emitting object model which represents light-
emitting objects inside the room, such as ceiling lights,
lamps, and windows that pass light coming from the out-
side world. We implement this light source model in our
differentiable renderer named MILO-Renderer. To allevi-
ate the ambiguities during inverse rendering, we propose
three critical disambiguation constraints, i.e., 1) sufficient
sampling constraint, 2) finite material constraint, and 3)
reflectance similarity constraint. We use these constraints
to design a specific neural network named MILO-Net to
predict light source and material parameters. Thanks to
these designs, MILO applies complex light transport to the
edited scenes and renders more photo-realistic images on
post-edited scenes as shown in Figure 1.

MILO is a demonstration of scene-level inverse render-
ing that recovers fully spatially varying light sources and
materials by leveraging differentiable path tracing. MILO is
able to capture complex interactions between virtual objects
and scene objects in virtual object insertion tasks. This
is because MILO recovers physically light-emitting objects
and simulates multi-bounce light transmission, which is not
supported in existing inverse rendering methods [6], [20],

[25], [30], [42], [55]. To sum up, our contributions are:

• We propose a novel light-emitting object model,
which can represent common light sources (e.g., ceil-
ing lights and windows) in indoor scenes. This model
is more suitable for scene editing, and friendly to
differentiable rendering.

• We design a specific MILO-Net containing disam-
biguation constraints, which alleviates major errors
in recovered light sources and materials caused by
ambiguities in path tracing based differentiable ren-
dering.

• We implement a Monte Carlo path tracing differ-
entiable renderer — MILO-Renderer, which renders
multi-bounce lighting and achieves superior render-
ing results with better photo-realistic quality.

2 RELATED WORK

Lighting and reflectance information can be inversely esti-
mated from images via intrinsic image decomposition, light-
ing estimation, inverse light transport, and differentiable
rendering. In this section, we briefly review related works
in these categories.

Intrinsic image decomposition methods aim at decom-
posing an image into a pixel-wise multiplication of sev-
eral photometric components, which usually contain dif-
fuse albedo and shading (including the interaction between
lighting and surface normal). Recent works use more realis-
tic microfacet BRDF models [1], [11], [17] for reflectance. We
recommend the readers refer to related survey papers [8],
[28] for more details.

Lighting estimation methods usually use high-
dimensional data structures to represent lighting in the
scene, such as SVSG (Spatially Varying Spherical Gaus-
sian) [25], SVSH (Spatially Varying Spherical Harmonics)
models [4], [38], [55], MLP (Multilayer Perceptron) [30],
and voxel-like structures [41], [48]. Recent works recover
reflectance and lighting together and achieve promising in-
verse rendering results [5], [10], [25], [48]. However, lighting

TABLE 1
Comparison among recent works on indoor scene inverse rendering using intrinsic image decomposition (IID) [25], [55], lighting estimation

(LE) [30], [42], inverse light transport (ILT) [6], [20], [50], and differentiable rendering (DR) [2], [31] (including ours) methods. Inputs are abbreviated
as S. Img. (Single Image), M. Img. (Multi-view Image), Geo. (Geometry), and Seg. (Object segmentation). Reflectance models are abbreviated as

P-SVBRDF (Partially Spatially Varying BRDF) and F-SVBRDF (Fully Spatially Varying BRDF).

Method Type Input Lighting Reflectance Detail Level Multi-bounce
Reflection

Zhou et al. [55] SVSH Lambertian
Li et al. [25] IID & LE S. Img. SVSG Pixel

Wang et al. [48] Voxel-like F-SVBRDF Included in

Mildenhall et al. [30] LE MLP Continuous Lighting Model

Srinivasan et al. [42] M. Img. Voxel-like N/A
VoxelBi et al. [6] F-SVBRDF

Kim et al. [20] ILT Geo. & M. Img. PL Lambertian Pixel No

Yu et al. [50]
P-SVBRDF∗

Mixed† Approximated
Azinović et al. [2] Geo. & M. Img. LO (Object) Object
David et al. [31] DR & Seg. Mixed‡ Path Tracing
MILO (Ours) Geo. & M. Img. LO (Continuous) F-SVBRDF Continuous

∗. These methods recover BRDF with parameters shared between different 3D points. We call these methods P-SVBRDF (Partially Spatially
Varying BRDF). In contrast, methods recovering BRDF independently at different points are called F-SVBRDF (Fully Spatially Varying BRDF).
†. Specular related parameters in BRDF are shared within each surface. Diffused parameters are at pixel detail level.
‡. Specular related parameters in BRDF are shared within each object. Diffused parameters are at pixel detail level.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

contains both direct emission from light sources and indirect
reflection from other objects, as a result, it is difficult to edit
the recovered lighting.

Inverse light transport methods recover light sources
and reflectance parameters in the 3D space. Different from
lighting models, light source models only describe direct
light emission. Commonly used light source models are:
point light (PL) sources [18], [20], [50], spotlights [52], light-
emitting objects [2], [18], and environment maps. Inverse
light transport can discriminate direct emission and reflec-
tion for achieving good scene editing results, but these
simplified light source models can hardly describe complex
light sources in the real world.

Differentiable rendering methods calculate derivatives
of the rendered image with respect to scene parameters,
which include rasterization based methods [19], [26], [27],
path tracing based methods [24], [32], [54], and voxel ray
marching based methods [6]. These methods mainly focus
on calculating derivatives of step functions that commonly
exist in rendering due to geometry discontinuity [54]. Dif-
ferentiable rendering methods are also used in inverse ren-
dering based on learning and optimization. This category of
method takes advantage of the more accurate light transport
simulation. It recovers light source and BRDF parameters
simultaneously. However, optimizing a large number of
independent parameters in the whole scene simultaneously
is still difficult due to the ambiguities. Methods by Azi-
nović et al. [2] and David et al. [31] reduce the number of
parameters by object segmentation. They recover all [2] or
part [31] of the reflectance and light source properties at the
object level. Methods by David et al. [31] and Yu et al. [50]
recover diffuse albedo of the reflectance parameters at the
pixel level to enrich details, but other parameters are still
shared at the object level. These methods share some of the
BRDF parameters at different 3D points, which we name
as partially spatially varying BRDF. It is still challenging to
recover reflectance parameters at the fully spatially varying
BRDF level.

In this paper, we focus on recovering reflectance and
light source parameters using path tracing based differen-
tiable rendering. We circumvent the step function derivative
problem by proposing a novel light source model and allevi-
ate ambiguities by a specially designed neural network. The
comparison between some related inverse rendering works
and MILO (ours) is listed in Table 1.

3 METHOD

MILO consists of two parts: MILO-Renderer and MILO-
Net. The complete pipeline is shown in Figure 2. MILO
takes the scene geometry and a set of High Dynamic Range
(HDR) images captured from different viewpoints with their
camera poses as input. MILO-Net predicts six parameter
maps from geometry to describe the properties of light-
emitting objects and the reflectance of the scene. Three of
them describe material properties: diffuse albedo map kd,
specular albedo map ks, and roughness map ka. The other
three describe light-emitting object properties: emission
map ke, window map kw, and outdoor environment map kg .
MILO-Renderer conducts inverse path tracing, which uses
six parameter maps, scene geometry, and camera poses to

Rendered Images

Six Parameter Maps

Captured Images

ℒimage

MILO-Renderer

Camera PosesMILO-Net

Geometry

Emission 𝑘𝑒

Diffuse Albedo 𝑘𝑑 Specular Albedo 𝑘𝑠 Roughness 𝑘𝑎

Window 𝑘𝑤 Envmap 𝑘𝑔 Emission 𝑘𝑒

Diffuse Albedo 𝑘𝑑 Specular Albedo 𝑘𝑠 Roughness 𝑘𝑎

Window 𝑘𝑤 Envmap 𝑘𝑔

Rendered Images

Six Parameter Maps

Captured Images

ℒimage

MILO-Renderer

Camera PosesMILO-Net

Geometry

Emission 𝑘𝑒

Diffuse Albedo 𝑘𝑑 Specular Albedo 𝑘𝑠 Roughness 𝑘𝑎

Window 𝑘𝑤 Envmap 𝑘𝑔
∗

∗. The parameter maps displayed here are from the ground truth of
this scene for better illustration. The recovered environment map kg
only contains part of the outdoor scenes visible through the window.

Fig. 2. MILO pipeline. MILO-Net takes scene geometry as input to
predict light-emitting and reflectance properties for differentiable path
tracing. MILO-Renderer uses scene geometry, six parameter maps, and
camera poses to render images. Rendered images are compared with
captured images.

render images and calculates the derivatives of parameter
maps in back propagation.

3.1 Problem Formulation and Light Source Model

Given the geometry and a set of images of an indoor scene,
each pixel value is converted to an observed radiance, which
is denoted as L̃j , j = {1, 2, · · · ,M}. The total number of
observed radiance values M equals the number of images
times the number of pixels per image. The reflected radiance
L (ωr,x) at scene surface point x with reflected light direc-
tion ωr can be formulated by the rendering equation [16]
as

L (ωr,x) = E (ωr,x) +

∫
Ω
fr (ωi,ωr,x)L (ωi,y) cosθdωi. (1)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

E is the light source model and fr is the BRDF model.
L (ωi,y) is incident radiance from angle ωi. y is the source
point of the incident ray, which is calculated by intersecting
incident ray with the scene. θ is the angle between surface
normal and ωi. We assume that radiance does not decay as
light transports in the air. The incident radiance is integrated
over the upper hemisphere Ω.

To model light-emitting objects such as indoor lights
and windows in the scene, we introduce three parameter
maps: the emission map ke (RGB), the window map kw in
range (0, 1), and the outdoor environment map kg (RGB) to
represent E as

E (ω,x) = ke (x) + kw (x) · kg (ω) . (2)

In our light source model, all light sources adhere to the
object surface and are directly visible from the camera. The
emission map ke describes the radiance of objects that emit
omnidirectional light. The window map kw describes the
capacity that a window surface passes light from the outside
world. And the outdoor environment map kg describes the
radiance of outdoor lighting from incident angle ω. Indoor
lights such as ceiling lights and lamps are represented by
ke. We assume that these light sources emit omnidirectional
light, which cast identical radiance in every direction on
the upper hemisphere of the surface, so the radiance is a
function only w.r.t. light position x. On the other hand, the
light passing through the window is represented by kw and
kg . We assume that windows are fully transparent, so kw
is a binary function w.r.t. window position x. We assume
that the sun, sky, and other outdoor scenes are far enough
so that kg is a function only w.r.t. ray direction ω. Different
from traditional light source representations such as point
light and area light, we use continuous functions to describe
light source properties. The position x and direction ω are
fixed while the radiance functions are being optimized. In
this way, we avoid suffering from step function gradient
problem for cast shadows and alleviate local minima prob-
lems caused by the light source position.

To represent the reflectance properties of the scene, we
use the Cook-Torrance BRDF model [11] as fr , which is
a function of the diffuse albedo map kd (RGB), specular
albedo map ks(RGB), and roughness map ka in range (0, 1):

fr (ωi,ωr,x) =
1

π
kd (x) +

DFG

π (ωi ·N) (N · ωr)

D =
1

πkα (N ·H)
4 · exp

(
(N ·H)2 − 1

kα(N ·H)2

)
G = min

(
1,

2 (H ·N) (ωi ·N)

ωi ·H
,

2 (H ·N) (ωr ·N)

ωi ·H

)
F = ks + (1− ks)(1−N · wi)5.

(3)

3.2 MILO-Renderer

MILO-Renderer calculates the radiance of a ray in a differ-
entiable manner. Given the starting point and direction of a
ray, Monte Carlo path tracing approximates the radiance by
random walk:

L (ω,x) =
1

S

S∑
s=1

B∑
b=0

E (ωb,r,xb)
b−1∏
k=0

fr (ωk,i,ωk,r,xk)

P (ωk,i,ωk,r,xk)
cos θ. (4)

(c) Specular Uncertainty

Light
Source

Specular
Reflector

Camera

Virtual Light
Source

Camera

Unknown
Specular
Albedo

(c) Specular Uncertainty

Light
Source

Specular
Reflector

Camera

Virtual Light
Source

Camera

Unknown
Specular
Albedo

(b) Diffuse-emission Ambiguity

Light
Source

Diffuse
Reflector

Camera

Light
Source

Light
Source

Camera

Light
Source

Diffuse
Reflector

Camera

Light
Source

Light
Source

Camera

(b) Diffuse-emission Ambiguity

Light
Source

Diffuse
Reflector

Camera

Light
Source

Light
Source

Camera

(a) Multi-bounce Ambiguity

Light
Source

Camera

Light
Source

Reflector

Reflector
with Icon Reflector

Reflector
with Icon

Camera

(a) Multi-bounce Ambiguity

Light
Source

Camera

Light
Source

Reflector

Reflector
with Icon Reflector

Reflector
with Icon

Camera

(c) Specular Uncertainty

Light
Source

Specular
Reflector

Camera

Virtual Light
Source

Camera

Unknown
Specular
Albedo

(b) Diffuse-emission Ambiguity

Light
Source

Diffuse
Reflector

Camera

Light
Source

Light
Source

Camera

(a) Multi-bounce Ambiguity

Light
Source

Camera

Light
Source

Reflector

Reflector
with Icon Reflector

Reflector
with Icon

Camera

Fig. 3. Three types of ambiguities during inverse rendering: (a) Multi-
bounce ambiguity: the icon on the wall (on the left side) and the icon
on the specular ball (on the right side) both render the same result on
the specular ball; (b) Diffuse-emission ambiguity: the lower plate reflects
light on the left side, while emitting light on the right side, consequently,
the virtual ball on the right side has wrong shading and no shadow.
(c) Specular uncertainty: the specular parameters are recovered only
by the left side, however, if replacing the light source to a larger ball,
the specular reflection is rendered correctly only in the small highlighted
area on the right side.

S is the sampling number. B is the number of maximum
bounces. xb is the point on surface of the b-th bounce. ωb,i

and ωb,r are incident and reflected ray directions at the b-
th bounce. P is Probability Density Function (PDF) used
for importance sampling [23]. Please refer to the experiment
section for detailed importance sampling implementation.

MILO-Renderer uses Equations (2), (3), and (4) as the
rendering function, in which six parameter maps are inde-
pendent variables. The gradients of these parameter maps
are calculated by backpropagation. Here we do not calculate
derivatives w.r.t. PDF P [51] because it is also used by im-
portance sampling. With MILO-Renderer, we can render the
radiance of rays and compare them with observed values,
using the following loss function:

Limage =
M∑
j=1

∥∥∥L (ωj ,xj)− L̃j
∥∥∥

2
. (5)

3.3 Ambiguities and Disambiguation Constraints
MILO-Renderer provides the gradients of six parameter
maps for their optimization. However, directly optimizing

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

these parameter maps will not produce a unique result.
In general, there are infinite combinations of six parameter
maps to satisfy minimizing the image loss Limage, within
which only one combination is correct. Next, we analyze
three types of ambiguities causing infinite solutions and in-
troduce our disambiguation constraints to select the correct
combination.
Multi-bounce ambiguity. The rendered radiance of each
pixel is influenced by light sources and all surface materials
in the light transmission path. As a result, many combina-
tions of light-emitting objects and materials could render the
same observed radiance value for a pixel. Such an ambiguity
exists between shading map and reflectance map in intrinsic
image decomposition methods [3]. Multi-bounce ambiguity
also exists between two materials at a higher number of
bounces. An example is shown in Figure 3 (a): A specular
ball in the middle is reflecting an icon on the left wall,
however, the inverse rendering may misunderstand that the
icon belongs to the ball’s specular albedo while the wall is
pure white, which renders the same result on the right side
of the ball.
Diffuse-emission ambiguity. Diffuse reflection and emis-
sion are described by diffuse albedo map kd and emission
map ke respectively. They both emit omnidirectional light,
so we cannot distinguish them just by appearance. How-
ever, the diffuse reflection will disappear if the incident light
is turned off or occluded by other objects while emission
still exists, so it is important to recover them correctly
in relighting and virtual object insertion tasks. As shown
in Figure 3 (b), on the right side, the inverse rendering
misunderstands that the lower plate is emitting light itself.
Although the shading on the plate is the same as the left
side, the inserted ball has no shadow and the shading is
incorrect.
Specular uncertainty. To recover specular albedo ks and
roughness ka, effective specular reflection observations and
incident light that contains enough high-frequency infor-
mation are required. The direct specular reflection of light
sources satisfies these requirements, however, it is only
visible in small highlighted regions. We can hardly cover
all scene regions with only a few input images, thus the
constraints for solving ks and ka in the uncovered area are
deficient. As shown in Figure 3 (c), the specular albedo is
only recovered correctly within the highlighted region while
the remaining area is not well constrained. As a result, the
edited light source renders incorrect specular reflection.

To solve these ambiguities, we propose three disam-
biguation constraints correspondingly:

• Sufficient sampling constraint: Every point in the
scene should appear at least three times in the images
with different observed radiance values.

• Finite material constraint: The whole scene is as-
sumed consisting of only a finite number of different
materials, including light sources and windows.

• Reflectance similarity constraint: The specular
albedo and roughness at undetermined areas are
supposed to have similar values to nearby regions
or regions with similar appearance.

To be specific, we assume that the total number of
different materials is Q (provided by users), within which

⊕

Geometry
Points

𝛾𝑐 ⋅

ℒvalue

MILO-
Renderer

Geometry
Normals

𝛾𝑓 ⋅

𝛾𝑓 ⋅ Envmap
Points

Material
Template

Inputs
Position

Encodings

MLP
Category

MLP
Fine

MLPs

ℒcategoty

ℒtexture

Parameter
Maps

MLP
Envmap

Fig. 4. MILO-Net takes geometry points, geometry normal, and envi-
ronment map (Envmap) points as inputs to predict all six fully spatially-
varying parameter maps.

only one light-emitting object material is used for windows
and S light-emitting object materials are used for lights with
learnable radiance. We ignore diffuse or specular reflections
from light-emitting object materials since their radiance
values are much larger than reflections.

To resolve multi-bounce ambiguity, the number of pa-
rameters of all materials should be less than or equal to
the total number of constraints when minimizing Limage.
Each region on the surface should be either light-emitting
object or non-light-emitting material. For light-emitting ob-
ject, there are 3 unknown parameters to be solved (RGB
values of either ke or kg), while for each non-light-emitting
material, there are 7 unknown parameters to be solved (RGB
values of kd, RGB values of ks, and ka). Each observed ray
provides 3 constraints (RGB values of the point). Since the
sufficient sampling constraint requires each point to appear
at least 3 times, there are at least 9 constraints for any
region in the scene, so the total number of constraints is
greater than unknown parameters to make Equation (1) well
constrained. However, sometimes the difference in radiance
is too small to be captured by cameras, e.g., the material has
too low specular albedo (Lambertian) or too low roughness,
or the lighting from different angles is similar. We can only
alleviate multi-bounce ambiguity in these cases rather than
eliminate it. In practice, to satisfy the sufficient sampling
constraint during data acquisition, the photographer should
capture several wide-baseline images that cover the region
as much as possible.

To resolve diffuse-emission ambiguity, we apply the
finite material constraint. As shown in Figure 3 (b), the
emission map of the object should be a gradient map to
fit the rendered image, which cannot be represented by a
finite number of materials. For the conservation of energy,
the brightest area (the upper plate) should belong to the
light-emitting object. With the finite material constraint,
we can easily determine several material parameters with
sufficiently observed radiance values from images.

To resolve specular uncertainty, the reflectance similarity
constraint and finite material constraint are used together.
These constraints are implemented in MILO-Net, a neural
network that predicts parameter maps from geometry.

3.4 MILO-Net
We propose a neural network named MILO-Net to predict
material maps from the given geometry. It is designed to

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

fulfill the following three functionalities: i) To generate fully
spatially varying light source and reflectance parameter
maps that have independent values at different 3D points;
ii) to implement finite material constraint, and iii) reflectance
similarity constraint as mentioned above. The structure of
MILO-Net is illustrated in Figure 4.

To generate fully spatially varying parameter maps, we
use MLPs with position encoding [30] as smooth projection
functions from 3D points to materials. For parameter maps
attached to the geometry (kd, ks, ka, ke, kw), we use both
geometry point positions and normals as input. For the
outdoor environment map, we generate a unit sphere and
use point positions on the sphere as input. The position en-
coding enriches fine grained details of the predicted result.
The positions are first normalized to the range of [−1, 1].
Then we use position encoding γ(x) to enhance quality of
the predicted parameter maps. For a point x in the scene,
the position encoding function is:

γ(x) =
(

sin
(
20πx

)
, cos

(
20πx

)
,

sin
(
21πx

)
, cos

(
21πx

)
,

...

sin
(

2L−1πx
)
, cos

(
2L−1πx

))
.

(6)

At the end of the neural network, we add kernel functions
to map the output to the proper range.

Finite material constraint requires that the scene con-
sists of only Q different materials. By concatenating all
parameter maps (kd, ks, ka, ke, kw) into an 11-D parameter
map km, finite material constraint is formulated as

k̃m(x) =

Q∑
i=1

Pi(x) ·mi, (7)

where mi is a material template with Q learnable materials,
Pi is the probability that the current point belongs to the
i-th material. The Pi values for each 3D point are predicted
by the first MLP. We use softmax function to convert MLP
outputs to material probability Pi and generate parameter
maps k̃m. To make sure each point belongs to only one
material, we add the category loss Lcategory:

Lcategory = −
∑
x

max
i
Pi(x). (8)

Reflectance similarity constraint requires that two
points should have similar parameter values if they are close
in 3D space. In another word, the gradient of the generated
parameter maps w.r.t. the inputs x should be small as
possible. This gradient is a production of position encod-
ing gradient and MLP gradient. Higher level of position
encoding results in a larger gradient, so we configure the
smoothness of material maps by tuning the level of position
encoding γc(x) [45]. To reduce the gradient of MLP, we also
add `2 regularization term to the first MLP.

The material template ensures finite material constraint,
however, it makes 3D points of the same material consis-
tent with each other. The lower level of position encod-
ing and `2 regularization term ensure reflectance similarity
constraint, but they make the generated parameter maps
over-smoothed. In order to keep the parameter maps fully

spatially varying and rich in high-frequency details, we
introduce detailed texture maps kt. This map is generated
using the second MLP with higher level of position en-
coding γf (x), and added to k̃m. We use `1 regularization
term on kt to make the network prefer generating parameter
maps using the first MLP:

km(x) = k̃m(x) + kt(x), (9)

Ltexture =
∑
x

‖kt(x)‖1 . (10)

In this way, the functionalities of the above two constraints
are maintained. Finally, the outdoor environment map kg is
generated using the third MLP. Detailed structures of these
three MLPs are shown in the experiment section.

To prevent producing invalid values (e.g., negative
albedo, negative emission, kd + ks ≥ 1.0) or extreme values
(e.g., zero roughness) for parameter maps, which cause
rendering error or gradient explosion, we add another value
loss Lvalue to limit input values within a correct range before
rendering. Finally, we render the predicted parameter maps
using MILO-Renderer and optimize MILO-Net parameters
to minimize the total loss:

L = α · Limage + β · Lcategory + θ · Ltexture + ζ · Lvalue. (11)

For each scene, we train MILO-Net on the fly, which
does not rely on a large amount of data for pre-training. All
learnable network parameters in MILO-Net are optimized
using AMSGrad [39] optimizer (for MLP parameters), and
SGD optimizer with Nesterov momentum [44] (for material
template parameters). After training, we predict six param-
eter maps and save them for post-editing. By modifying
camera poses, geometry, and predicted parameter maps, we
can re-render desired images.

3.5 Implementation
MILO-Net implementation. MILO-Net includes two posi-
tion encodings, three MLPs (Multi-layer Perceptron), and
a material template. MILO-Net is implemented using Py-
Torch [35]. The details are as follows:

For all three MLPs, we use 16-layer structures. The
numbers of neurons at hidden layers are all 1024. We use
LeakyReLU as the activation function, which uses 0.01 as
the slope for negative values. We add skip connections
(similar to residual networks) to the last 8 layers to solve the
vanishing gradient problem. The level of position encoding
L determines the smoothness of the predicted parameter
maps. For lower-level position encoding γc, we use 10 as
L to implement reflectance similarity constraint. For higher-
level position encoding γf , we set L as 12 to enrich more
high-frequency details. We use model parallelism to split
the task on two graphics cards. Because training MLPs on
all pixels requires too much VRAM, we only select 8.3%
of the pixels stochastically for gradient calculation at each
iteration.

For the material template, according to the sufficient
sampling constraint, each material should be either light-
emitting object material or normal material. For light-
emitting object materials, diffuse albedo kd and specular
albedo ks are set to 0, and roughness ka is set to 0.05.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

No Importance
Sampling

Basic Importance
Sampling

Full Importance
Sampling

Full Importance
Sampling

with Denoiser

No Importance
Sampling

Basic Importance
Sampling

Full Importance
Sampling

Full Importance
Sampling

with Denoiser

Fig. 5. Rendering results using different importance strategies. All im-
ages are rendered using 256 samples per pixel. Our full importance
sampling strategy achieves the best result. We further reduce noise by
denoiser for final result visualization.

Although the roughness map ka doesn’t affect the rendered
image because specular albedo ks is set to 0, it affects the
process of optimization because other non-LO materials are
soft combinations of items in the material template. We find
that it is better to set a smaller value for ka. For non-LO
materials, emission ke and window kw are set to 0. Other
parameters (ke and kw for light-emitting object material; kd,
ks, and ka for normal material) are learnable variables.
MILO-Renderer implementation. We implement MILO-
Renderer in OpenCL [43]. There are two processes in MILO-
Renderer: The forward process renders images from six pa-
rameter maps. The backward process calculates the deriva-
tives of rendered images with respect to six parameter maps.

In the forward rendering process, MILO-Renderer ren-
ders the radiance value of a ray, given the scene geometry,
parameter maps, start point, and direction of the ray. The
geometry is stored in Wavefront OBJ format. In order to
project each 3D point in the scene to a 2D coordinate on
parameter maps, we unwrap the geometry using Blender.
In order to calculate the ray-scene intersections efficiently,
we build a Bounding Volume Hierarchy (BVH) acceleration
structure, which splits the scene along three coordinates in
turn and has a maximum of 20 levels. For each bounce,
we use a mixed importance sampling strategy to sample
incident ray direction effectively. The weights of the four
sub-strategies are equally distributed:

• Diffuse and specular reflection importance sam-
plings: We sample the incident ray direction using
the modified Phong reflectance model [23]. This sam-

pling strategy is commonly used in many renderers.
The weights for diffuse and specular reflection im-
portance samplings are both 0.25.

• Environment map importance sampling: We sample
the incident ray direction with a probability that is
proportional to the brightness of the predicted out-
door environment map. The weight for environment
map importance sampling is 0.25.

• Texture importance sampling: We generate a Proba-
bility Density Function (PDF) map and sample points
on the geometry as the incident ray direction. For
light-emitting objects, this probability is proportional
to the emission radiance value (average value of
RGB). For normal materials, this probability is pro-
portional to the image brightness (calculated by pro-
jecting camera-captured images to geometry). The
weight for texture importance sampling is 0.25. For
this strategy, calculating “all hits” during ray-scene
intersections is required.

For each bounce, we select one of these strategies ran-
domly according to their weights. The PDF of this mixed
strategy is the weighted average of them. The maximum
number of bounces B for each ray is 10, and the number
of samples per ray S is 256. For better visualization, the
final scene-editing results are further denoised by OpenIm-
ageDenoise [34]. This denoiser is not applied to the inverse
rendering process.

To demonstrate the effectiveness of our mixed impor-
tance sampling method and denoiser, we render the image
using no importance sampling, basic importance sampling
(diffuse and specular reflection importance samplings only),
full importance sampling (with all importance sampling
strategies), and denoiser (using full importance sampling
as the base image) in Figure 5 respectively. The results
show that better importance sampling strategies reduce the
sampling noise enormously.

In the backward rendering process, MILO-Renderer cal-
culates the derivatives of rendered images with respect
to six parameter maps. To prevent calculating ray-scene
intersections twice, intermediate variables, such as “closest
hit” of each ray-scene intersection and PDF of incident
ray sampling, are saved during forward rendering. We can
calculate the derivatives without calculating ray-scene inter-
sections again in the backward process. To reduce memory
consumption, only the last 3 bounces of each ray are saved

TABLE 2
Detailed information of 4 synthetic scenes and 5 real scenes. We evaluate MILO on different combinations of light source configurations.

Type Name Source #Point Cloud
Points

#Mesh
Faces #Images #Lights #LO

Material
#Window
Material

#Total
Materials

S1 98,957 29 5 1 0 64
S2 AI2-Thor [21] 69,250 37 8 2 1∗ 64Synthetic Scene S3 N/A 51,986 30 0 1 1∗ 64
S4 PBRS [53] 37,614 30 0 1 1∗ 64
R1 55,014,210 199,990 36 1 1 0 64
R2 39,397,840 199,996 22 4 1 0 64

Real Scene R3 N/A 53,059,330 199,997 27 0 1 1 64
R4 57,105,188 199,957 23 1 1 0 64
R5 51,707,150 199,976 27 4 1 0 64

∗. The ground truth outdoor environment maps are collected from Poly Haven [37]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

and calculated in the backward process. Different rays may
contribute gradient values to the same point on parameter
maps, so we accumulate all gradient values by the “atomic
float add” operation. When adding multiple gradient values
to the same point simultaneously, the collision problem
occurs, and the backward propagation efficiency is severely
reduced. We duplicate the derivative parameter maps into
64 buckets, each ray selects the bucket according to its ray
ID. In this way, we solve the collision problem and reduce
backward time consumption greatly.
Optimization. At each iteration, we randomly sample
65, 536 rays from all images as a batch. The weights of
all losses (α, β, θ, ζ) are set to 1.0, 0.003, 0.01, and 0.1
respectively. The weights for regularization terms (β, θ, ζ)
are related to the number of samples S and parameter
map resolutions, so they require readjustment for different
settings accordingly. For each scene, the whole optimization
procedure requires 2000 iterations to fully recover all six pa-
rameter maps. At each iteration, a batch of rays is sampled
randomly. All rays are dynamically split and rendered on
two graphics cards. It takes about 10 hours to train for one
scene.

Because the variances of gradient values of material
template parameters are related to the ray batch sampling
and Monte Carlo sampling, there is high randomness in gra-
dient variance. As a result, the adaptive gradient algorithms
relying on gradient variances are not suitable. We choose the
SGD optimizer with Nesterov momentum [44] to optimize
the material template parameters. The initial learning rate
is set to 0.01. Other MLP parameters are optimized using
AMSGrad [39] with 0.001 initial learning rate. We decay the
learning rates of the two optimizers by multiplying 0.3 at
400-th and 800-th iterations.

4 EXPERIMENT

Datasets. Our method is evaluated using 4 synthetic scenes
and 5 real captured scenes. Two NVIDIA GeForce RTX 3090
graphics cards are used to render the dataset, train MILO-
Net, differentiably render the scenes, and re-render post-
edited scenes. We show input image examples, geometries,
and detailed information of all synthetic and real scenes in
Figure 6 and Table 2.

For synthetic scenes, we choose 2 scenes from the PBRS
dataset [53] and 2 scenes from the AI2-THOR dataset [21].
The scenes in the PBRS dataset are originally rendered using
the Mitsuba renderer [15], which is a CPU-based renderer.
The scenes in AI2-THOR are originally rendered using
Unity, which is not a physically-based renderer. For better
performance and image reality, we convert these scenes to
our format and render them using MILO-Renderer. We com-
bine all objects in the scene together as a single Wavefront
OBJ file, unwrap the geometry using Blender, and bake the
textures into our six parameter maps representation. Several
virtual cameras are placed into each scene manually to
render images with light-source and material ground truth
using MILO-Renderer.

For real scenes, we scan the geometries of 5 indoor
scenes using the Intel RealSense D455 depth camera [14],
and use Dot3D Pro software [12] to reconstruct and export
dense point clouds with point normals from all the scenes.

Synthetic Scene S4

In
p

u
t

Im
a

g
e

G
e

o
m

e
tr

y

Real Scene R1 Real Scene R2

In
p

u
t

Im
a

g
e

G
e

o
m

e
tr

y

Synthetic Scene S1 Synthetic Scene S2 Synthetic Scene S3

Real Scene R3

In
p

u
t

Im
a

g
e

G
e

o
m

e
tr

y

Real Scene R4 Real Scene R5

Synthetic Scene S4

In
p

u
t

Im
a

g
e

G
e

o
m

e
tr

y

Real Scene R1 Real Scene R2

In
p

u
t

Im
a

g
e

G
e

o
m

e
tr

y

Synthetic Scene S1 Synthetic Scene S2 Synthetic Scene S3

Real Scene R3

In
p

u
t

Im
a

g
e

G
e

o
m

e
tr

y

Real Scene R4 Real Scene R5

∗

∗ †

† †

∗. There are opened doors in these scenes. We use the outdoor
environment map to represent light passing through the door.
†. There are holes in these real scenes due to the imperfect 3D

scanning. For better visualization, we fill these holes using Poisson after
rendering.

Fig. 6. Input image examples and geometries of 4 synthetic scenes and
5 real scenes. Our dataset covers different categories of rooms in indoor
scenes.

Each scene contains about 50M points. We reconstruct trian-
gular meshes using SSD (Smooth Signed Distance) surface
reconstruction [9], and simplify the triangular meshes to
about 20K triangular faces using MeshLab [29]. For captur-
ing images, we place a RICOH THETA Z1 360◦ camera [46]
on a tripod to record HDR (High Dynamic Range) images
using exposure bracketing. We choose a proper EV (Expo-
sure Value) for each scene to capture light source radiance,
then double the EV for 7 times. We stitch the two fisheye
images using RICOH THETA Stitcher. To align geometry
and captured images, we place several AprilTags [33] in the
scene, which are detected and located by the Dot3D Pro soft-
ware. After performing image alignment, we remove pixels
with the tripod, AprilTags, and their cast shadows and spec-
ular reflections from input images. All six parameter maps

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

(b) Example Scene B

Diffuse Albedo Specular Albedo

Roughness Light-emitting Object

(a) Example Scene A

Roughness

Specular Albedo

Light-emitting Object

Diffuse Albedo

Rendered Image

Rendered Image

(b) Example Scene B

Diffuse Albedo Specular Albedo

Roughness Light-emitting Object

(a) Example Scene A

Roughness

Specular Albedo

Light-emitting Object

Diffuse Albedo

Rendered Image

Rendered Image

Fig. 7. Recovered parameter maps for two real scenes and the rendered
images. The specular highlights (green circle) and cast shadows (blue
double circle) are removed in diffuse and specular albedo. Only the
ceiling lights are emitting light.

are of 1024×1024 resolution. All captured panorama images
and outdoor environment maps are unwrapped using cubic
projection to prevent gradient explosion near the two poles.
The projected resolution is 6× 512× 512.
Supplementary video. We encourage readers to view our
supplementary video for a comprehensive demonstration
of our inverse rendering results. We show novel view
synthesis, virtual object insertion, and relighting results
to demonstrate our inverse rendering quality, and add an
optimization procedure as an intuitive illustration.

4.1 Evaluation of Parameter Maps Recovery

First, we evaluate the quality of the recovered light source
and material maps. We show the recovered parameter maps
of two real scenes in Figure 7 to demonstrate the effec-
tiveness of MILO. Only the ceiling lights are emitting light
physically (light-emitting objects) in real scenes, while other
objects are reflecting light. The tables and floors are smooth
(specular), while the walls, ceilings, and the curtain are
rough (diffuse). These properties are correctly recovered in
the parameter maps. Compared with the rendered images,
specular reflections and cast shadows are correctly removed
in diffuse and specular albedo maps.

To demonstrate the advantage of recovering fully spa-
tially varying parameters, we inverse render two synthetic
scenes with ground truth object segmentation in Figure 8.
In this scene, there are objects that have different materials.
For example, the sink has a specular top surface (in the
blue double circle) and a wooden front surface (in the

Ground TruthObject Segmentation

Specular Material

Diffuse Material

 Azinović et al. David et al. Ours

Ground TruthObject Segmentation

Specular Material

Diffuse Material

 Azinović et al. David et al. Ours

Fig. 8. Comparison with methods by Azinović et al . [2] and
David et al . [31] on synthetic scene. There are two different materials
on this sink (the specular top surface and the diffuse front surface).
Methods by Azinović et al . [2] and David et al . [31] rely on object
segmentation, resulting in artifacts in the blue circle. Our method doesn’t
require object segmentation as input and predicts the specular highlight
in the blue circle correctly.

green circle). We compare MILO with two state-of-the-
art differentiable rendering methods by Azinović et al. [2]
and David et al. [31] ∗, which use object segmentation as
input. The re-rendered results are shown in Figure 8. Azi-
nović et al. [2]’s method shares the same material parameters
on each object, as a result, the re-rendered sink shows a
brown top surface color learned from the front side (in the
green circle), which is a wrong color. David et al. [31]’s
method uses per-pixel diffuse albedo, but still share specular
albedo and roughness parameters on each object, as a result,
the top surface has wrong specular parameters and specular
highlights aren’t rendered correctly. Thanks to the fully
spatially varying design of MILO-Net, our method doesn’t
rely on object segmentation as input and recovers different
materials on the same object correctly.

For synthetic scenes, we evaluate parameter map recov-
ery accuracy by comparing them with the ground truth. We
visualize two example results in Figure 9. For parameter
maps of light-emitting objects (ke, kw, and kg), the average
MSE (Mean Square Error) is 0.002. For parameter maps
of materials (kd, ks, and ka), we render a shading ball
for each pixel (down-sampled for better visualization), and
the average MSE is 0.015. The results demonstrate high
accuracy of our method.

4.2 Application: Virtual Object Insertion
By editing the geometry and the predicted six parameter
maps, we implement virtual object insertion. We compare
our virtual object insertion quality with four state-of-the-art
indoor scene inverse rendering methods, i.e., Li et al. [25],
Srinivasan et al. [42], Azinović et al. [2], and David et al. [31].
These methods have different inputs and designs, which are
listed in Table 1. We perform virtual object insertion using
these five methods and calculate the error maps with respect
to the ground truth as a quantitative comparison. We insert
a diffuse object, a specular object, and a light-emitting object
into each scene, and utilize PSNR (Peak Signal-to-noise

∗. Both of these works are not open source. To implement their
methods, we remove the three disambiguation constraints from MILO-
Net, light source model from MILO-Renderer, and make some of the
parameters shared within the same object.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

(b) Example Scene B

Rendered Image Light-emitting Objects Material

(a) Example Scene A

Inverse Rendered

Ground Truth Ground Truth Ground Truth

Inverse Rendered Inverse Rendered

Rendered Image Light-emitting Objects Material

Inverse Rendered Inverse Rendered Inverse Rendered

Ground Truth Ground Truth Ground Truth

(b) Example Scene B

Rendered Image Light-emitting Objects Material

(a) Example Scene A

Inverse Rendered

Ground Truth Ground Truth Ground Truth

Inverse Rendered Inverse Rendered

Rendered Image Light-emitting Objects Material

Inverse Rendered Inverse Rendered Inverse Rendered

Ground Truth Ground Truth Ground Truth

Fig. 9. Recovery results of Light-emitting objects and materials us-
ing synthetic data. The recovered light-emitting object and surface re-
flectance are similar to ground truth. Please zoom in to see the details.

TABLE 3
Quantitative comparison with four methods on synthetic scenes. MILO
achieves the best quantitative performance regarding all error metrics.

↑(↓) indicates larger (smaller) values are better.

Method PSNR↑ SSIM↑ NCC↑ MSE↓
Li et al. [25] 24.12 0.955 0.957 0.004

Srinivasan et al. [42] 23.77 0.964 0.956 0.004
Azinović et al. [2] 14.48 0.829 0.501 0.036
David et al. [31] 16.54 0.827 0.775 0.022
MILO (Ours) 26.49 0.964 0.978 0.002

Ratio) [13], SSIM (Structural Similarity Index Measure) [47],
NCC (Normalized Cross Correlation) [47], and MSE (Mean
Square Error) as error metrics. The performances are shown
in Table 3.

To intuitively demonstrate the effectiveness of our
method, we visualize an example of synthetic scene in
Figure 10. For real data, since ground truth for virtual object
insertion is not available, we show only qualitative results in
Figure 11. Methods by Li et al. [25] and Srinivasan et al. [42]
preserve details on the original images well, however, high
frequency reflections of the invisible area and the occlusion
relationship between objects are not rendered correctly due
to limited FoV (Field of View) of single/stereo input images
and inserting virtual object in the image space. The inserted
virtual light source object also shows no illumination on
scene object due to the limitation of image based editing.
From error maps of the synthetic scene, we can see that
the errors concentrate on the inserted ball and surround the
virtual light source. The other three methods all use path

MILO (Ours)

Srinivasan et al.

Error Map Error Map Error Map

Li et al.

Azinović et al. David et al.

Input & Ground Truth

Error Map Error Map

Fig. 10. Qualitative comparison for virtual object insertion on a synthetic
scene with Li et al . [25], Srinivasan et al . [42], Azinović et al . [2],
and David et al . [31]. Our method demonstrates lower error than other
methods on error maps. Li et al . [25]’s method inserts balls on image
plane directly, so the balls have circular shapes. Other methods insert
balls in the 3D space and use perspective camera model, so the balls
have ellipse shape.

tracing architecture and render virtual light source illumina-
tion well. Methods by Azinović et al. [2] and David et al. [31]
rely on object segmentation. We annotate and provide
Ground Truth segmentation for them. Azinović et al. [2]’s
method recovers materials at object detail level. Textures
on the sofa are missing. For scenes with window, results
from Azinović et al. [2] and David et al. [31] both show
uniform emission on the window. From error maps of the
synthetic scene, we can see that the errors concentrate on
the window, specular ball, and the highlight area on the
floor. We believe it is because lighting through the window
is different from their omnidirectional light source model.
The missing reflection on the floor is caused by the incorrect
incident light from the window. In contrast, our light source
model is designed for scenes with window. As a result, there
are outdoor scene through the windows, and reflection on
the floor is rendered correctly. For scenes without window,
David et al. [31]’s method and our method achieve compara-
ble results, however, we don’t require object segmentation
as input. For scenes with window, only our method ren-
ders all virtual objects realistically, and produces complex
cast shadows, multi-bounce effects, and virtual light source
illumination correctly.

4.3 Application: Relighting
We verify the effectiveness of MILO-Net by showing a
relighting application. In our method, finite material con-
straint and reflectance similarity constraint are implemented

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

MILO (Ours)

Li et al. Srinivasan et al.

Azinović et al. David et al.

Input

Fig. 11. Qualitative comparison for virtual object insertion on three real
scenes with Li et al . [25], Srinivasan et al . [42], Azinović et al . [2],
and David et al . [31]. Our method produces more photorealistic cast
shadows, multi-bounce effects, and virtual light source illumination. For
the scene with window, our method recovers outdoor scene through the
window and renders reflection on the floor correctly.

in MILO-Net. Without MILO-Net, we use two MLPs with
position encoding to generate all six parameter maps di-
rectly. In this way, the two disambiguation constraints are
disabled. We can “turn off” the scene light sources by setting
its emission map to zero, and add virtual light-emitting ob-
jects to the scene, which illuminate the room with different
lighting. We inversely render a real scene using MLP (in
Figure 12 (a)) and MILO-Net (in Figure 12 (b)) to predict
parameter maps respectively. As shown in the results, the
re-rendered images with scene light source on (left) are
similar to MLP. However, without MILO-Net, the scene light
source is not turned off correctly (middle), the walls are too
bright in relighted image (right). These artifacts are caused
by diffuse-emission ambiguity. In Figure 12 (a), the walls
and ceiling are emitting light. With a lower diffuse albedo
correspondingly, the re-rendered results can be the same.
However, when we turn off the original light source, the
reflection light from the walls keeps emitting abnormally. In

Light Source On Light Source Off Relighting

(b) Relighting Results with MILO-Net

(a) Relighting Results without MILO-Net (MLPs only)

Light Source On Light Source Off Relighting

Light Source On Light Source Off Relighting

(b) Relighting Results with MILO-Net

(a) Relighting Results without MILO-Net (MLPs only)

Light Source On Light Source Off Relighting

Fig. 12. The scene is inversely rendered using parameter maps pre-
dicted with and without MILO-Net respectively. Without MILO-Net, the
scene light source cannot be fully turned off, and the walls and ceiling
are emitting abnormal light. With MILO-Net, the shading on the wall and
cast shadow on the floor are more realistic.

MILO (Ours)Phlip et al.

Azinović et al. David et al.

Input

Fig. 13. Qualitative comparison with methods proposed by Azi-
nović et al . [2], David et al . [31], and Philip et al . [36] for relighting on
a real scene. Our method renders virtual light illumination and specular
reflection (red dashed circle), cast shadow (green circle) correctly and
preserves details on scene objects (blue double circle).

contrast, The walls are classified as reflecting light correctly
with the help of disambiguation constraints in MILO-Net.
As a result, these two images are both rendered correctly.

We compare our relighting quality with methods pro-
posed by Azinović et al. [2], David et al. [31], and
Philip et al. [36] †. The results are shown in Figure 13.
Azinović et al. [2]’s method assumes uniform material on
each object, which erases the detailed textures on the sofa
(in blue double circle). In contrast, our method renders
the texture correctly thanks to the fully spatially varying
design on every material parameters. David et al. [31]’s
method provides much detailed textures, however, the cast
shadow of the original ceiling light under the table is not
removed cleanly (in green circle). We think it is because this
method optimizes diffuse albedo without constraints, which
is not robust to deviations in light source and reflection
model. In contrast, our method removes cast shadow more
cleanly and is more robust to noises thanks to finite material

†. Scanned geometry and HDR images are provided to this method
as input, which are better than MVS geometry and RAW images in
the original settings. Each panoramic image is split into 6 perspective
images.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

Mitsuba 3

MILO-RendererMILO-RendererMILO-Renderer

Mitsuba 3Mitsuba 3

Fig. 14. Exporting recovered scenes to other renderers. Mitsuba 3 and
MILO-Renderer generate similar images in scene re-rendering.

Rendered

Image

Recovered

Diffuse

Albedo

Recovered

Diffuse

Albedo

Color

Bleeding

No Color

Bleeding

Rendered

Image

Recovered

Diffuse

Albedo

Recovered

Diffuse

Albedo

Color

Bleeding

No Color

Bleeding

Fig. 15. Effectiveness of sufficient sampling constraint. There is a light
source on the top, a white diffuse plane on the left, and a red diffuse
plane on the right (left image). Color bleeding occurs without sufficient
sampling constraint (middle image). The diffuse albedo is recovered
correctly only with sufficient sampling constraint (right image)

constraint. Philip et al. [36]’s method shifts cast shadows on
the floor correctly and preserves detailed textures. However,
the specular reflection is much weaker, and the virtual light
illumination is less contrastive (in dashed red circles). We
think it is because this method uses image-based neural
network to render the image, which has limitations in gen-
eralization ability and may not preserve physical properties.
In contrast, our method generates image directly from path
tracing based renderer, which renders virtual light illumina-
tion and specular reflection correctly.

4.4 Discussion

Exporting scene to other renderers. For compatibility with
the existing engines in scene re-rendering, we export the
recovered scenes by simplifying the light-emitting object
model. The existing rendering engines, e.g., Mitsuba [15]
and Blender [7], lack support of our light source model
and the importance sampling technique accordingly. They
only support objects with uniform emission intensity and
environment maps, so we split the ceiling lights and win-
dows from the geometry by a threshold. For ceiling lights,
we assign the average emission intensity to the objects. For
windows, we remove the geometry to let the light pass-
ing through and use environment map model for outdoor
scenes. As shown in Figure 14, we re-render the optimized
scenes using Mitsuba 3. The result images are similar to
ours. However, MILO-Renderer is the only option for scene
reconstruction because our light source model is essential in
the optimization procedure but it is not supported by other
renderers.
Effectiveness of sufficient sampling constraint. Color
bleeding is a common problem in many inverse rendering
methods [31], [42], [50]. It is usually caused by two diffuse

Novel View Synthesis

(b) Inverse Rendering Using 22 Input Images

Material Editing Virtual Object Insertion

(a) Inverse Rendering Using a Single Input Image

Novel View Synthesis Material Editing Virtual Object Insertion

Novel View Synthesis

(b) Inverse Rendering Using 22 Input Images

Material Editing Virtual Object Insertion

(a) Inverse Rendering Using a Single Input Image

Novel View Synthesis Material Editing Virtual Object Insertion

Fig. 16. The scene is inversely rendered using a single image and 22
images as input respectively. When using a single image as input, the
specular reflection on the wall is missing (dashed blue circle), and there
is a dark area on the floor where there was specular highlight in the input
image (green circle). A larger number of input images produces higher
quality on all three applications.

Number of Images

N
V

S
 M

S
E

N
V

S
 M

S
E

4

8

12

16

Number of Materials

N
V

S
 M

S
E

N
V

S
 M

S
E

8

13

18

28

× 10
-3

× 10
-3

23

Number of Images

N
V

S
 M

S
E

4

8

12

16

Number of Materials

N
V

S
 M

S
E

8

13

18

28

× 10
-3

× 10
-3

23

Fig. 17. Influence of image number and material number. MILO pro-
duces robust results as long as image number is not too small (≥ 10)
and material number is not too small (≥ 4).

surfaces inter-reflecting light to each other, resulting in
albedo maps with mixed color. We build a simplified scene
in Figure 15 (left) to demonstrate this phenomenon. There is
a light source on the top and two diffuse planes facing each
other. Due to inter-reflection, the left plane looks pink. In
our MILO-Net, the sufficient sampling constraint is used to
deal with the color bleeding problem. As shown in Figure 15
(middle), the diffuse albedo of the left wall is a mixed color
of white and red without sufficient sampling constraint. We
believe this is because the diffuse albedo parameters kd of
two planes are functions of light source radiance, which
is provided by sufficient sampling constraint. Our render-
ing result in Figure 15 (right) shows that, with sufficient
sampling constraint, the light source radiance is recovered
correctly, and the diffuse albedo parameters of the two walls
are clean without color bleeding.
Influence of hyperparameters. There are two hyperparam-
eters in our method: The number of input images and the
number of materials in the material template.

According to sufficient sampling constraint, if we use
too few images as input, multi-bounce ambiguity will cause
errors in re-rendered images of edited scenes. As shown in
Figure 16, results on novel view synthesis, material editing,
and virtual object insertion are all better in Figure 16 (b)
(using 22 input images) than Figure 16 (a) (using a single

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

input image). In contrast, taking too many images is time-
consuming for the photographer, and limits the application.
We compare novel view synthesis quality with respect to
the input image number in Figure 17 (left). The re-rendered
images achieve robust quality as long as the input image
number is not too small (≥ 10), so we capture 20–30 images
for all scenes.

In the material template, there is a hyperparameter Q
denoting the total number of materials. According to finite
material constraint, if the material template includes too
many materials (Q too large), the effect of disambiguation
will be reduced, and it will also consume more hardware
resources. In contrast, too few materials (Q too small) can
hardly represent real scenes. We compare novel view syn-
thesis quality with respect to material number in Figure 17
(right). The re-rendered images achieve robust quality as
long as the material number is not too small (≥ 4). When
Q is larger than the number of materials in the scene,
multiple redundant materials will converge to the same one,
so choosing a relatively larger Q will not affect the quality.
We use 64 materials to recover all scenes.

5 CONCLUSION

We propose MILO: Multi-bounce Inverse rendering for
indoor scene with Light-emitting Objects. Through the pro-
posed light-emitting object model, we can edit indoor scenes
with more complex light sources. By designing three dis-
ambiguation constraints, we can eliminate most errors in
re-rendered images. The results on both synthetic and real
data demonstrate the advantages of MILO comparing with
existing methods in virtual object insertion, material editing,
relighting tasks, and so on.

The limitations of MILO are as follows: First, MILO
requires scanned geometry as input, which costs more than
image-based methods. The scanned geometries are of lower
resolution than images and contain artifacts, which limit the
inverse rendering quality. Second, we train MILO-Net for
each scene on the fly, which requires the neural network to
remember the whole scene. As a result, some of the details
are lost (e.g., the texture on the floor in the middle row of
Figure 11) due to the limited representation power of neural
networks. It also consumes more computational power than
learning-based methods. These limitations will be further
investigated in our future work.

ACKNOWLEDGMENT

This work is supported by National Natural Sci-
ence Foundation of China under Grant No. 62136001,
62088102, and Shenzhen Collaborative Innovation Program
(CJGJZD2021048092601003).

REFERENCES

[1] Michael Ashikhmin and Peter Shirley. An anisotropic phong brdf
model. Journal of Graphics Tools, pages 25–32, 2000.

[2] Dejan Azinović, Tzu-Mao Li, Anton Kaplanyan, and Matthias
Nießner. Inverse path tracing for joint material and lighting
estimation. In Proc. of Computer Vision and Pattern Recognition, 2019.

[3] Jonathan T Barron and Jitendra Malik. Shape, illumination, and
reflectance from shading. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 1670–1687, 2014.

[4] Ronen Basri and David W Jacobs. Lambertian reflectance and
linear subspaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 218–233, 2003.

[5] Sai Bi, Xiaoguang Han, and Yizhou Yu. An L1 image transform
for edge-preserving smoothing and scene-level intrinsic decompo-
sition. ACM Transactions on Graphics, pages 1–12, 2015.

[6] Sai Bi, Zexiang Xu, Kalyan Sunkavalli, Milos Hasan, Yannick
Hold-Geoffroy, David J. Kriegman, and Ravi Ramamoorthi. Deep
reflectance volumes: Relightable reconstructions from multi-view
photometric images. In Proc. of European Conference on Computer
Vision, 2020.

[7] Blender Online Community. Blender: A 3D modelling and render-
ing package, 2022.

[8] Nicolas Bonneel, Balazs Kovacs, Sylvain Paris, and Kavita Bala.
Intrinsic decompositions for image editing. In Computer Graphics
Forum, 2017.

[9] Fatih Calakli and Gabriel Taubin. SSD: smooth signed distance
surface reconstruction. Comput. Graph. Forum, 30(7):1993–2002,
2011.

[10] Chong Cao, Feng Lu, Chen Li, Stephen Lin, and Xukun Shen.
Makeup removal via bidirectional tunable de-makeup network.
IEEE Transactions on Multimedia, pages 2750–2761, 2019.

[11] Robert L. Cook and Kenneth E. Torrance. A reflectance model
for computer graphics. ACM Transactions on Graphics, pages 7–24,
1982.

[12] https://www.dotproduct3d.com/dot3dpro.html.
[13] Quan Huynh-Thu and Mohammed Ghanbari. Scope of validity of

PSNR in image/video quality assessment. Electronics letters, pages
800–801, 2008.

[14] https://www.intelrealsense.com/depth-camera-d455/.
[15] Wenzel Jakob. Mitsuba renderer, 2010. http://www.mitsuba-

renderer.org.
[16] James T Kajiya. The rendering equation. In Proc. of ACM SIG-

GRAPH, 1986.
[17] Brian Karis and Epic Games. Real shading in unreal engine 4. Proc.

Physically Based Shading Theory Practice, page 3, 2013.
[18] Kevin Karsch, Kalyan Sunkavalli, Sunil Hadap, Nathan Carr,

Hailin Jin, Rafael Fonte, Michael Sittig, and David A. Forsyth.
Automatic scene inference for 3d object compositing. ACM Trans-
actions on Graphics, pages 32:1–32:15, 2014.

[19] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d
mesh renderer. In Proc. of Computer Vision and Pattern Recognition,
pages 3907–3916. IEEE Computer Society, 2018.

[20] Young Min Kim, Sangwoo Ryu, and Ig-Jae Kim. Planar abstraction
and inverse rendering of 3d indoor environment. IEEE transactions
on visualization and computer graphics, 2019.

[21] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca
Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Abhinav
Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D Environ-
ment for Visual AI. arXiv, 2017.

[22] Eric P. Lafortune. Mathematical Models and Monte Carlo Algorithms
for Physically Based Rendering. PhD thesis, Department of Com-
puter Science, KU Leuven, Celestijnenlaan 200A, 3001 Heverlee,
Belgium, February 1995.

[23] Eric P Lafortune and Yves D Willems. Using the modified phong re-
flectance model for physically based rendering. Katholieke Universiteit
Leuven. Departement Computerwetenschappen, 1994.

[24] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen.
Differentiable monte carlo ray tracing through edge sampling.
ACM Transactions on Graphics, pages 222:1–222:11, 2018.

[25] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan
Sunkavalli, and Manmohan Chandraker. Inverse rendering for
complex indoor scenes: Shape, spatially-varying lighting and
SVBRDF from a single image. In Proc. of Computer Vision and
Pattern Recognition, 2020.

[26] Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. Soft rasterizer:
A differentiable renderer for image-based 3d reasoning. In Proc. of
International Conference on Computer Vision, pages 7707–7716. IEEE,
2019.

[27] Matthew M. Loper and Michael J. Black. Opendr: An approximate
differentiable renderer. In David J. Fleet, Tomás Pajdla, Bernt
Schiele, and Tinne Tuytelaars, editors, Proc. of European Conference
on Computer Vision, pages 154–169. Springer, 2014.

[28] Yupeng Ma, Xiaoyi Feng, Xiaoyue Jiang, Zhaoqiang Xia, and
Jinye Peng. Intrinsic image decomposition: A comprehensive
review. In Yao Zhao, Xiangwei Kong, and David Taubman, editors,
International Conference on Image and Graphics Processing, pages 626–
638. Springer, 2017.

[29] https://www.meshlab.net/.
[30] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T.

https://www.dotproduct3d.com/dot3dpro.html
https://www.intelrealsense.com/depth-camera-d455/
https://www.meshlab.net/

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

Barron, Ravi Ramamoorthi, and Ren Ng. NeRF: Representing
scenes as neural radiance fields for view synthesis. In Proc. of
European Conference on Computer Vision, 2020.

[31] Merlin Nimier-David, Zhao Dong, Wenzel Jakob, and Anton Ka-
planyan. Material and lighting reconstruction for complex indoor
scenes with texture-space differentiable rendering. In Eurographics
Symposium on Rendering, 2021.

[32] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel
Jakob. Mitsuba 2: a retargetable forward and inverse renderer.
ACM Transactions on Graphics, pages 203:1–203:17, 2019.

[33] Edwin Olson. AprilTag: A robust and flexible visual fiducial
system. In Proceedings of the IEEE International Conference on
Robotics and Automation, 2011.

[34] https://www.openimagedenoise.org/index.html.
[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James

Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Na-
talia Gimelshein, Luca Antiga, et al. PyTorch: An imperative
style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

[36] Julien Philip, Sébastien Morgenthaler, Michaël Gharbi, and George
Drettakis. Free-viewpoint indoor neural relighting from multi-
view stereo. ACM Trans. Graph., 40(5):194:1–194:18, 2021.

[37] https://polyhaven.com/hdris.
[38] Ravi Ramamoorthi and Pat Hanrahan. On the relationship be-

tween radiance and irradiance: Determining the illumination from
images of a convex lambertian object. Journal of the Optical Society
of America A, pages 2448–2459, 2001.

[39] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the Conver-
gence of Adam and Beyond. In International Conference on Learning
Representations, Feb. 2018.

[40] Soumyadip Sengupta, Angjoo Kanazawa, Carlos D Castillo, and
David W Jacobs. SfSNet: Learning shape, reflectance and illumi-
nance of faces in the wild. In Proc. of Computer Vision and Pattern
Recognition, 2018.

[41] Pratul P Srinivasan, Boyang Deng, Xiuming Zhang, Matthew
Tancik, Ben Mildenhall, and Jonathan T Barron. Nerv: Neural
reflectance and visibility fields for relighting and view synthesis.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7495–7504, 2021.

[42] Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T.
Barron, Richard Tucker, and Noah Snavely. Lighthouse: Predicting
lighting volumes for spatially-coherent illumination. In Proc. of
Computer Vision and Pattern Recognition, 2020.

[43] John E Stone, David Gohara, and Guochun Shi. OpenCL: A paral-
lel programming standard for heterogeneous computing systems.
Computing in science & engineering, page 66, 2010.

[44] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton.
On the importance of initialization and momentum in deep learn-
ing. In International conference on machine learning, pages 1139–1147.
PMLR, 2013.

[45] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional do-
mains. In Proc. of Neural Information Processing Systems, 2020.

[46] https://theta360.com/en/about/theta/z1.html.
[47] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simon-

celli. Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, pages 600–612,
2004.

[48] Zian Wang, Jonah Philion, Sanja Fidler, and Jan Kautz. Learning
indoor inverse rendering with 3d spatially-varying lighting. In
Proc. of International Conference on Computer Vision, 2021.

[49] Yair Weiss. Deriving intrinsic images from image sequences. In
Proc. of International Conference on Computer Vision, 2001.

[50] Yizhou Yu, Paul E. Debevec, Jitendra Malik, and Tim Hawkins.
Inverse global illumination: Recovering reflectance models of real
scenes from photographs. In Warren N. Waggenspack, editor, Proc.
of ACM SIGGRAPH, pages 215–224. ACM, 1999.

[51] Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev, and Wenzel
Jakob. Monte carlo estimators for differential light transport. ACM
Transactions on Graphics, pages 78:1–78:16, 2021.

[52] Edward Zhang, Michael F. Cohen, and Brian Curless. Emptying,
refurnishing, and relighting indoor spaces. ACM Transactions on
Graphics, pages 174:1–174:14, 2016.

[53] Yinda Zhang, Shuran Song, Ersin Yumer, Manolis Savva, Joon-
Young Lee, Hailin Jin, and Thomas Funkhouser. Physically-based
rendering for indoor scene understanding using convolutional
neural networks. Proc. of Computer Vision and Pattern Recognition,
2017.

[54] Shuang Zhao, Wenzel Jakob, and Tzu-Mao Li. Physics-based
differentiable rendering: from theory to implementation. In Proc.
of ACM SIGGRAPH, pages 14:1–14:30. ACM, 2020.

[55] Hao Zhou, Xiang Yu, and David Jacobs. GLoSH: Global-local
spherical harmonics for intrinsic image decomposition. In Proc.
of International Conference on Computer Vision, 2019.

Bohan Yu received the BS degree from Peking
University in 2021. He is currently pursuing Ph.D.
degree with Professor Boxin Shi at the Camera
Intelligence Lab, Peking University. His research
interest lies on computational photography and
inverse rendering.

Siqi Yang received the BS degree from Peking
University in 2022. He is currently pursuing Ph.D.
degree at Peking University. His research inter-
ests include computational photography, inverse
rendering and outdoor relighting.

Xuanning Cui received the BS degree from
Peking University in 2022. He is currently pursu-
ing ME degree at Peking University. His research
interests include inverse rendering and outdoor
relighting.

Siyan Dong is a Ph.D. candidate at Shandong
University. His research interests mainly include
3D reconstruction, visual localization, scene un-
derstanding, and robotics.

Baoquan Chen is an Endowed Boya Professor
of Peking University. His research interests gen-
erally lie in computer graphics, computer vision,
visualization, and human-computer interaction.
Chen received an MS in Electronic Engineering
from Tsinghua University, Beijing, China, and a
second MS and then PhD in Computer Science
from the State University of New York at Stony
Brook, New York, U.S.A. For his contribution to
spatial data visualization, he was elected IEEE
Fellow in 2020. He was inducted to IEEE Visual-

ization Academy.
Boxin Shi received the BE degree from the
Beijing University of Posts and Telecommunica-
tions, the ME degree from Peking University, and
the PhD degree from the University of Tokyo,
in 2007, 2010, and 2013. He is currently a
Boya Young Fellow Assistant Professor and Re-
search Professor at Peking University, where he
leads the Camera Intelligence Lab. Before join-
ing PKU, he did research with MIT Media Lab,
Singapore University of Technology and Design,
Nanyang Technological University, and National

Institute of Advanced Industrial Science and Technology from 2013 to
2017. His papers were awarded as Best Paper Runner-Up at Interna-
tional Conference on Computational Photography 2015 and selected as
Best Papers from ICCV 2015 for IJCV Special Issue. He has served as
an editorial board member of IJCV and an area chair of CVPR/ICCV. He
is a senior member of IEEE.

https://www.openimagedenoise.org/index.html
https://polyhaven.com/hdris
https://theta360.com/en/about/theta/z1.html

	Introduction
	Related Work
	Method
	Problem Formulation and Light Source Model
	MILO-Renderer
	Ambiguities and Disambiguation Constraints
	MILO-Net
	Implementation

	Experiment
	Evaluation of Parameter Maps Recovery
	Application: Virtual Object Insertion
	Application: Relighting
	Discussion

	Conclusion
	References
	Biographies
	Bohan Yu
	Siqi Yang
	Xuanning Cui
	Siyan Dong
	Baoquan Chen
	Boxin Shi

