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Abstract—Sleep monitoring is essential to people’s health and
wellbeing, which can also assist in the diagnosis and treatment of
sleep disorder. Compared with contact-based solutions, contact-
less sleep monitoring does not attach any device to the human
body; hence, it has attracted increasing attention in recent years.
Inspired by the recent advances in Wi-Fi-based sensing, this arti-
cle proposes a low-cost and nonintrusive sleep monitoring system
using commodity Wi-Fi devices, namely, WiFi-Sleep. We lever-
age the fine-grained channel state information from multiple
antennas and propose advanced fusion and signal processing
methods to extract accurate respiration and body movement
information. We introduce a deep learning method combined with
clinical sleep medicine prior knowledge to achieve four-stage sleep
monitoring with limited data sources (i.e., only respiration and
body movement information). We benchmark the performance of
WiFi-Sleep with polysomnography, the gold reference standard.
Results show that WiFi-Sleep achieves an accuracy of 81.8%,
which is comparable to the state-of-the-art sleep stage monitoring
using expensive radar devices.
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I. INTRODUCTION

SLEEP monitoring has attracted increasing attention from
research communities. Medical research shows that high-

quality sleep is not only beneficial to the adjustment and
recovery of physical function but also of great significance
to people’s mental health [1], [2]. In the fast-paced life today,
however, more and more people are suffering from sleep prob-
lems. Many health problems, such as sleep apnea and chronic
insomnia are closely associated with sleep quality. Poor sleep
quality may be the cause of many diseases, such as diabetes,
heart disease, and high blood pressure [3], [4]. Monitoring
people’s sleep quality on a long-term basis will not only help
to find potential health problems timely but also assist doc-
tors in performing the diagnosis and treatment of a variety of
diseases. According to American Academy of Sleep Medicine
(AASM) [5], sleep can be divided into five stages, i.e., Wake,
N1, N2, N3, and rapid eye movement (REM). Different sleep
stages have different physiological characteristics and func-
tions [6]. The basis for measuring sleep quality is the time
distributions during different sleep stages. A high-quality sleep
should include adequate sleep time and reasonable distribution
of sleep stages. Hence, the recognition and classification of
sleep stages is critical for sleep quality monitoring.

Polysomnography (PSG) has been used in clinical and
laboratory settings to monitor the sleep through a range of
sensors, and it has been regarded as the de-facto standard for
sleep assessment [7], [8]. These sensors typically allow for
the measurement of brain activity through electroencephalo-
gram (EEG), airflow, heart rate, breathing rate, blood oxygen
level, and the electrical activity of muscles. PSG requires sub-
jects to sleep in a laboratory setting. The sensor data will
then be interpreted to determine the sleep stages by doctors
who have been well trained. This method, however, is hard
to implement in a home setting due to the lack of medi-
cal equipment and expertise. In addition, a subject’s sleep
behavior may be quite different from her/his daily routine
due to the “first night effect” or frequent clinic visits, making
sleep stage monitoring in clinics not representative [9], [10].
In recent years, many off-the-shelf wearable devices, such as
wristband and smartwatch, embedded with heart rate sensor
and accelerometer, have been used to classify sleep stages
based on the relationship between sleep stages and heart rate
and motion [11]. However, wearing sensors the whole night
may cause discomfort to subjects, limiting its use in real
life.
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Recent studies [12]–[15] have shown significant advance-
ment in wireless sensing using Wi-Fi signals to understand
human activities and behaviors. For example, Wang et al. [16]
demonstrated that Wi-Fi signals can be used to detect body
movement in daily life, such as walking and sitting, and
Zeng et al. [17] reported a system to detect human respira-
tion using commodity Wi-Fi devices in which respiration is
always detectable. Wireless sensing provides a new opportu-
nity for nonintrusive sleep monitoring. SMARS [18] makes
the first attempt for sleep monitoring using Wi-Fi signals and
studying three-stage sleep classification (i.e., Wake, REM, and
NREM). However, existing studies have some shortcomings,
which we articulate as follows.

We first implement SMARS and conduct evaluations. Our
results show that respiration is not always detectable though it
fuses a wide bandwidth. We find clearly many blind spots
where SMARS is not able to detect respiration. This may
be caused by using channel state information (CSI) ampli-
tude only. Second, SMARS fails to distinguish N1, N2, and
N3 stages from NREM. Our experimental study shows that
the respiration features extracted in SMARS present sim-
ilar patterns among N1, N2, and N3. In sleep medicine,
N3 stage plays an important role in cerebral restoration and
recovery in humans [19]. N3 stage is hence often referred
to as deep sleep, and N1 and N2 stages are combined as
light sleep. Differentiating these stages is important but chal-
lenging due to similar features among them. In addition,
medical research [20] shows that there is a strong relation-
ship between body movement and sleep stage, i.e., the rate
of body movements decreases with the stage in the follow-
ing sequence: Wake >N1 >REM >N2 >N3. SMARS applies
a simple threshold to represent motion statistics, which may
not be able to efficiently capture body movements.

Aiming at overcoming the above challenges, in this article,
we design a sleep stage monitoring system, named WiFi-
Sleep, to monitor and classify four sleep stages (i.e., Wake,
REM, Light Sleep, and Deep Sleep) using commodity Wi-
Fi devices. We propose several novel techniques. First, our
study shows that using CSI amplitude only may cause blind
spots. WiFi-Sleep utilizes the CSI ratio, combining both ampli-
tude and phase signal, which complement to each other, to
remove blind spots. Second, high signal-to-noise ratio (SNR)
is highly desired to ensure effective feature extraction from
the signal waveform. To maximize SNR, we propose a novel
maximal-ratio combining, the principal component analysis
(MRC-PCA) method to fuse all CSI subcarriers. With this
method, we can extract more features, such as respiration
depth variance and inhale-to-exhale ratio, which have not been
explored in the existing work. These newly discovered features
are used in classifying different sleep stages [21], which also
play an important role in medical research. Third, we utilize
the Doppler-MUSIC (Multiple Signal Classification) method
to capture body movement, which is useful in the sleep stage
classification. We further classify all body movements into
major body movements (MBMs) and periodic limb movements
(PLMs). Finally, WiFi-Sleep introduces the context of phys-
iological characteristics to the deep neuron network and
adds restrictions of sleep stage transition in medicine prior

knowledge. By utilizing context and transition properties, sleep
stages can be classified more accurately.

In summary, the main contributions of this article are as
follows.

1) We design WiFi-Sleep—the first system to monitor four
sleep stages using commodity Wi-Fi devices in a real
environment.

2) We use the CSI ratio to eliminate blind spots for better
detection rate and propose the MRC-PCA method to
maximize SNR of the respiration waveform so that more
respiration features can be extracted from Wi-Fi signals
with a limited bandwidth.

3) We introduce prior knowledge of sleep stage transition in
medicine to the deep neural network so that WiFi-Sleep
can distinguish similar sleep stages better.

4) We conduct comprehensive experiments with 12 subjects
over 19 nights in a residential home bedroom alike set-
ting and evaluate the effectiveness of WiFi-Sleep. The
results show that WiFi-Sleep achieves an accuracy of
81.8%.

The remainder of this article is organized as follows. The
related works are summarized in Section II. Section III shows
our system workflow. Section IV introduces our respiration
and body movement detection methods, and Section V intro-
duces our four-sleep stage classification method in detail.
Section VI presents experimental evaluations of WiFi-Sleep.
Finally, we conclude this article in Section VII.

II. RELATED WORK

A. Sleep Stage Classification

The existing sleep stage classification works can be divided
into two categories: 1) contact-based and 2) contactless.

Contact-based sleep monitoring typically uses EEG devices,
smart wristbands, and smartwatches. Sleep stage classifi-
cation based on EEG is represented by the work done
in [22]–[24]. In these works, brainwave signals captured by
EEG sensors are collected to match with different sleep stages.
Higashi et al. [25] used dry portable electrodes and achieved
about 75% accuracy [24]. Alickovic and Subasi [23] used
SVM and achieved about 90% accuracy and 92% recall for
four-class classification. However, the drawbacks of these
approaches are obvious. EEG devices are expensive and may
cause uncomfortableness for long-term wearing.

Smart wristbands (e.g., Fitbit Charge 2 [26]) and smart-
watches (e.g., Apple Watch [27]) have been used in sleep stage
classification. These devices can accurately extract physiolog-
ical information, such as body movement and heart rate by
their inertial sensors, such as accelerometer, gyroscope, com-
pass, and infrared heart rate sensor. Study in [26] using Fitbit
achieves 61% accuracy for wake, 81% accuracy for light sleep,
49% accuracy for deep sleep, and 74% accuracy for REM.
This method has been widely used commercially for long-term
sleep monitoring despite its low accuracy.

Contactless sleep monitoring typically uses radar devices
and mobile phone sensors. Radar devices have been used in
DoppleSleep [28] and RF-Sleep [29] to acquire heart rate, res-
piratory rate, and body movement information more accurately
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TABLE I
RESPIRATION AND BODY MOVEMENT CHARACTERISTICS IN DIFFERENT SLEEP STAGES, DATA FROM [20], [21], AND [37]

by high-frequency radio signals. RF-Sleep achieves an accu-
racy of 79.8% for four-class classification. Contactless sleep
monitoring does not require users to wear any device and may
facilitate long-term sleep monitoring, but radar equipment is
very costly. Smartphones have been used in sleep monitor-
ing, such as Sleep Hunter [30], [31] utilizing microphone,
accelerometer, light sensor, and other sensors to detect events
during sleep, such as body movement, snoring, cough, long
breathing, and rapid breathing. This approach offers a cheap
solution to contactless sleep monitoring, but its accuracy is
far from satisfaction (e.g., Sleep Hunter reports an accuracy
of 64% only for three-class classification) due to the limitation
of smartphone sensors.

B. Wi-Fi Perception

Wi-Fi signals have been used in recent years for activity
recognition, respiration detection, and sleep monitoring. The
respiration sensing based on Wi-Fi is represented by the works
done in [12], [17], and [32]–[34]. The study in [32] uses the
Fresnel zone model to explain the principle of breath detection
based on Wi-Fi and finds that the effect of breath detec-
tion is closely related to the locations of subjects and Wi-Fi
devices. The studies in [17] and [34] discover complementarity
of the CSI phase and amplitude, providing the theoreti-
cal foundation for detecting respiration to be used in this
article.

The activity detection based on Wi-Fi is represented by
CRAM [16], [35] and Dopple-MUSIC [36]. CRAM puts for-
ward a CSI-speed model to recognize nine kinds of daily
human activities. Dopple-MUSIC is a method to extract
speed spectrum from the Wi-Fi signal. The work [36] uti-
lizes information from the speed spectrum to classify human
activities.

The study in SMARS [18] presents a sleep monitoring
system based on Wi-Fi. SMARS extracts the respiration rate
by fusing the autocorrelation function (ACF) of CSI ampli-
tudes using MRC, so it can alleviate the blind spots issues. It
estimates motion statistics from the fused ACF signal. Wake
and sleep can be then distinguished by motion statistics, and
REM and NREM can be distinguished by observing breath-
ing rate variability and breathing rate deviation. While this
study focuses on three-stage sleep classification on Wi-Fi
devices, our work focuses on challenging four-stage sleep
classification.

Fig. 1. System overview.

III. SYSTEM OVERVIEW

Studies [5], [6], [20], [37] show that sleep stages vary
in the respiration rate, variability, fractional inspiration time
(FIT), depth, and body movement rate. We summarize these
differences in Table I.

From the table, we observe that different sleep stages
have different body movements and respiration characteris-
tics, which can be effectively used to classify sleep stages.
Based on this idea, we design WiFi-Sleep, a four-stage sleep
monitoring system, which consists of three modules—data col-
lection, respiration and body movement detection, and sleep
stage classification, as shown in Fig. 1.

The system works in a pair of Wi-Fi transceivers with a
subject in the middle. Raw CSI signals will be collected by
Intel 5300 Network Interface Card. We use one transmitting
and three receiving antennas to enable 1 × 3 MIMO. Due to
network delay and packet loss, the receiving time of each CSI
signal may be misaligned; hence, a fixed sample rate will be
used to resample the raw CSI signal. In addition, due to errors
from the sampling frequency offset (SFO), central frequency
offset (CFO), and packet boundary detection (PBD) [38], a
phase shift occurs in CSI signals. To eliminate phase shift,
we calculate the CSI ratio on each pair of receiving anten-
nas [17], [39]. In this way, respiratory and body movement
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information can be extracted from the CSI ratio. To sup-
press noise and maximize the SNR of the detected respiration
waveform, we propose the MRC-PCA algorithm to fuse all
channels from the CSI ratio into one respiratory waveform
with the maximum SNR. For body movement, we employ
Doppler-MUSIC (multiple signal classification) algorithm [36]
to extract the speed spectrum from the CSI ratio. Finally, we
extract a series of features from physiological activities and
build a deep learning-based classifier to determine four sleep
stages.

IV. RESPIRATION AND BODY MOVEMENT DETECTION

A. Respiration Sensing With CSI Ratio

1) Wi-Fi CSI: Wi-Fi CSI describes how the orthogonal
frequency-division multiplexing (OFDM) signals get atten-
uated, faded, and scattered by surrounding objects during
propagation. In an indoor environment, Wi-Fi signals prop-
agate from transmitter to receiver through multiple paths,
leading to multipath distortions. Mathematically, Wi-Fi CSI
is the superposition of all path signals

H(f , t) =
L∑

i=1

Aie
−j2π

di(t)
λ (1)

where L is the number of paths, λ is the wavelength, Ai is the
amplitude attenuation, and di(t) is the length of the ith prop-
agation path. According to [17], all the paths can be grouped
into static path and dynamic path. The static paths are com-
posed of the Line-of-Sight (LoS) path and reflected paths from
the walls and static objects in the environment, which do not
change over time. While the dynamic paths are the signal
paths induced by the moving targets, we assume there is only
one subject in the lab and there is only one reflection path
corresponding to the subject’s chest movement caused by res-
piration. When the target moves a short distance, the signal
attenuation of the dynamic path can be considered as a con-
stant [40]. Furthermore, due to the fact that the transmitter
and receiver are not clock synchronized, a time-varying phase
offset is introduced in the obtained CSI. Mathematically, the
CSI can be denoted as

H(f , t) = e−jφ(t)
(

Hs + Ae−j2π
d(t)
λ

)
(2)

where φ(t) is the time-varying phase offset, Hs is the static
component corresponding to the static path, and A and d(t)
are the signal attenuation and the length of the dynamic path,
respectively.

2) CSI Ratio: The CSI ratio refers to the quotient of the CSI
readings from two adjacent antennas at the same receiver [34]

Hratio(f , t) = H1(f , t)

H2(f , t)
(3)

where H1(f , t) is the CSI of the first antenna and H2(f , t)
is the CSI of the second antenna. As demonstrated in [34],
with this division operation between two antennas, most of
the noise in the original CSI amplitude and the time-varying
phase offset are canceled out. The CSI ratio of two antennas
obtained is much more noise-free and sensitive compared to
the original CSI reading from a single antenna when sensing

Fig. 2. Fresnel zone model.

subtle movements [34]. Another big advantage of this “CSI
ratio” is that phase information can now be utilized together
with the amplitude for sensing. Note that most of the existing
works use CSI amplitude for sensing because CSI phase is
not stable due to the lack of hard synchronization between the
transmitter and receiver. The phase of the ratio is stable as
the time-varying random offsets are the same at both antennas
and are thus canceled by the division operation. We further
combine the phase and amplitude of the CSI ratio, which are
complementary to each other in terms of sensing capability to
remove the “blind spots” reported in [41].

B. Respiration Enhancement by MRC-PCA

To obtain a respiration waveform with higher SNR, we pro-
pose a novel MRC-PCA method to fuse all subcarriers of the
CSI ratio into one respiration waveform. In most cases, this
method can obtain respiration waveforms better than a single
subcarrier with the highest SNR.

The CSI signal is a combination of respiration waveform
and noise. The SNR of each subcarrier usually varies because
it combines respiration waveform and noise with different
magnitudes. MRC can fuse subcarriers with different SNR by
providing a different gain for each subcarrier, which is propor-
tional to the root mean square of signal energy and inversely
proportional to the root mean square of noise energy. The com-
bined signal is the weighted average of all subcarriers. For the
independent Gaussian noise, MRC is the best among all fusion
methods for its highest expected SNR [42].

Though MRC is a general diversity fusion strategy with
successful applications in wireless communications, it is not
a trivial task to apply MRC in fusing the CSI signal. MRC
requires the gain value of each subcarrier to be positive, how-
ever, the direction of respiratory waveform carried by each
subcarrier is also affected by the frequency of a subcarrier and
the location of the subject. This phenomenon can be explained
by the Fresnel model. As shown in Fig. 2, in the 2nd, 4th, and
6th Fresnel zones, CSI amplitudes have the same direction
with respiratory waveform (positive direction), which means
positive gains. However, in the 1st, 3rd, and 5th Fresnel zone,
CSI amplitudes have the opposite direction with respiratory
waveform (negative direction), which means negative gains.
As shown in Fig. 3(a), it can be seen that subcarriers C1 and
C3 have high SNR, subcarriers C0 and C2 have low SNR,
subcarriers C0 and C2 have the same respiratory waveform
direction as the ground truth from the thoracoabdominal belts,
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Fig. 3. (a) Original signals with different SNRs and directions. (b) Signals multiplied by gains from MRC-PCA.

and subcarriers C1 and C3 have a reverse respiration wave-
form. As a result, the direct use of MRC will cause the positive
and negative respiratory waveform, which will cancel each
other, resulting in weakening the effective information in the
signal.

To fuse signals with different directions and SNRs, we pro-
pose the MRC-PCA method for subcarrier fusion. We first
calculate the SNR of each subcarrier. Since respiration wave-
form and noise cannot be separated directly, we use the power
spectral density to estimate SNR. We calculate the ratio of
signal energy within the range of normal respiratory rate and
signal energy above the normal respiratory rate as SNR. In
order to correctly fuse signals from subcarriers with different
respiratory waveform directions, we correct respiration wave-
form direction by PCA. We first multiply the signal by MRC
gain and apply a bandpass filter within the respiratory rate
range to each subcarrier. By multiplying MRC gain, we can
limit the upper bound of noise rate for further operations. The
bandpass filter removes noise to ensure PCA is maximizing
the amplitude of respiration rather than noise. Then, we cal-
culate the first principal component of subcarriers. Since the
first principal component is maximizing the variance of sig-
nal, it will adjust the gain of each subcarrier to make the
respiratory waveform direction consistent. PCA is able to fuse
signals with positive or negative gain; however, it maximizes
signal variance instead of maximizing SNR. The sign of the
first principal component represents the direction of the res-
piratory waveform. We add this sign to the MRC gain as the
final gain value to each subcarrier. In this way, all subcarriers
with positive or negative gain can be fused together correctly
with maximum SNR. As shown in Fig. 3(b), using the gain
determined by PCA, the respiratory waveform directions of
all subcarriers become consistent with respiration waveform
direction. The gains of all subcarriers are then adjusted by
their SNRs using MRC method. Subcarrier C3 has the highest
SNR, which contributes most to the fused waveform, while
the other subcarriers also make a relatively small contribution
for noise canceling. Finally, the weighted average is calculated
and all subcarriers are fused into one respiratory waveform.

We compare three signal processing methods, i.e., MRC,
selecting the best subcarrier with the highest SNR, and
MRC-PCA. As shown in Fig. 4, it can be seen that with MRC

Fig. 4. Comparison of respiration waveforms using three processing methods.

alone, some respiratory signals will cancel each other, result-
ing in a low SNR of the fused waveform. MRC-PCA considers
the SNR and respiratory waveform direction of each subcar-
rier together, and the fused waveform has a better effect than
the single subcarrier selected with the best SNR.

C. Body Movement Detection Using Doppler-MUSIC

Human body movement statistics during sleep (e.g., rolling
over and kicking leg) are also important features for sleep
stage classification, especially for four-stage sleep monitor-
ing. To detect and recognize different types of human body
movements, we employ the MUSIC algorithm to extract
Doppler speed spectrum from CSI ratio signals. MUSIC per-
forms eigenstructure analysis for the M×M correlation matrix
Rx of the consecutive M CSI ratio samples X. The correlation
matrix Rx is denoted as

Rx = E
[
XXH]

(4)

where H is the Hermitian (conjugate transpose) of the vec-
tor. There are M eigenvalues for the correlation matrix Rx.
The MUSIC algorithm divides these eigenvalues into two sub-
spaces: 1) the signal subspace Es and 2) noise space En. The
signal subspace Es corresponds to the largest L eigenvalues for
the signals through L different paths, while the noise subspace
En corresponds to the smallest M − L eigenvalues. Due to the
signal subspace and the noise subspace are orthogonal, the
Doppler speed spectrum function can be further expressed as

P(v)MUSIC = 1

�aH(v)EnEH
n �a(v)

(5)
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Fig. 5. Doppler-MUSIC speed spectrum and energy variance of the speed
spectrum and two thresholds.

where v is the Doppler speed, and �a(v) is the Doppler speed
vector [1, e−j2π f (v�t2/c), e−j2π f (v�t3/c), . . . , e−j2π f (v�tM/c)]T , in
which �ti is the time interval between the (i − 1)th sample
and the ith sample, and f is the carrier frequency.

In our implementation, a sliding window method is applied
to tradeoff the processing cost and speed resolution. The win-
dow size is set as 1 s with a step size of 0.1 s. In Fig. 5, the
upper one shows the speed spectrum obtained from Doppler-
MUSIC for 4000 s data collected during sleep. The speed
spectrum shows how the energy of each speed component
varies over time, where high energy components are colored
in yellow and low energy components are colored in blue. We
observe that when the subject keeps still, all the speed compo-
nents are at a low energy level. However, if the subject moves
her/his body or part of the body, the speed components in
the range of −0.5–0.5 m/s correspond to high energy. Thus,
we can employ the energy variance of the speed spectrum to
detect whether there is body movement. As shown in the lower
figure of Fig. 5, the energy variance of the speed spectrum
for movement is significantly larger than that for still. More
importantly, the magnitudes of energy variance can reflect dif-
ferent scales of body movements during sleep. Specifically,
MBM is at the largest magnitude, including body turns and
rolling over. While PLM is at a smaller magnitude. A larger
movement scale results in a greater energy variance. We set
two different thresholds (the red line in Fig. 5) to detect MBM
and PLM. These two thresholds are calibrated using MBM and
PLM detected by PSG devices by maximizing the F1-score,
detailed in Section VI. Then the features can be extracted from
the movement information to classify sleep stages.

D. Feature Extraction

After obtaining a clear respiration waveform and speed
spectrum, we need to design and extract useful features from
respiration and body movement data.

To obtain respiration rate features, we first need to extract
the respiration rate in a robust way. Existing methods gener-
ally apply a window in the time domain and use short-time
Fourier transform (STFT) to extract the frequency with the
maximum energy as the respiratory rate. Since the resolution
in the frequency domain is related to the size of the window
in the time domain, the larger window we use, the higher the
respiration rate resolution we obtain. However, the presence
of undetectable duration in the window will affect respiratory

Fig. 6. Respiration waveform and ACF.

detection, resulting in an incorrect respiratory rate, and a larger
time window will prolong the duration of this influence. This
may run into a paradox in selecting an appropriate window
size.

To solve this problem, we use the ACF [43] method to
extract respiratory rate. For a finite length discrete-time signal
y(n), the ACF Ryy(τ ) is defined as follows:

Ryy(τ ) =
∑

n∈Z

y(n)y(n − τ) (6)

where τ represents time lag.
Since the respiratory waveform is a periodic signal, Ryy(τ )

has the maximum value when τ reaches a full period; Ryy(τ )

has the minimum value when τ reaches a half period. As
shown in Fig. 6, for a respiratory waveform, the ACF presents
the periodic transformation of peak and valley alternations, and
the periodicity is consistent with the original signal. Then, the
respiratory rate rr(y) is extracted using the following formula:

rr(y) = 1

T
= 1

peak(1)
yy

(7)

where peak(1)
yy is the time lag of the first peak of ACF, which

is equal to respiratory period T . Then, the respiration rate
resolution |�rr(y)| is

|�rr(y)| = 1

rs

∣∣rr(y)′
∣∣ = 1

rs

(
peak(1)

yy

)2
(8)

where rs is the sampling rate of CSI signals.
According to (8), a higher rs results in a smaller |�rr(y)|,

indicating that the ability to detect small changes in respiration
rate is higher, and the resolution is not related to the win-
dow size. Therefore, ACF can effectively break the paradox
in STFT mentioned above.

With the above process, we can obtain respiration rate and
body movement information. For respiration, we first use the
respiration rate as a feature. Considering that the stability of
respiratory rate at different sleep stages differs from person to
person [5], [37] (i.e., the respiratory rate is stable during light
sleep and deep sleep, and it fluctuates greatly during wake
and REM), we use the variance of respiratory rate within a
sliding window as a feature to describe the fluctuation of res-
piratory rate. In addition, we also consider other features, such
as the smoothed respiration rate and its first-order derivative,
interquartile range (IQR) of respiration rate, and so on. In
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Fig. 7. MBM and PLM during sleep and their frequencies.

addition to respiration rate features, we also extract several
features from the respiratory effort. It has been found that the
respiratory depth is more irregular and the tidal volume is
smaller in REM than that in NREM [44]. When the subject
and Wi-Fi devices are stable, the deeper the subject breaths,
the larger the amplitude CSI signal changes. However, this
ratio converting respiratory depth to CSI signal depends on
the locations of subjects and Wi-Fi devices, which are usually
unknown. As a result, it is still challenging to sense respiratory
depth using Wi-Fi devices. WiFi-Sleep does not sense respira-
tion depth directly but obtains respiration depth variance in an
indirect way. We select a small window and assume that the
subject has a stable location during this period, which is com-
mon during sleep. We keep MRC-PCA parameters the same
in this window and normalize the obtained respiration wave-
form, the relative respiration depth is the same as the ground
truth. As shown in the lower figure of Fig. 6, we detect the
peak of each respiration cycle and calculate the depth variance
as a feature. Beside respiration depth, fractional inspiratory
time (the ratio of the time of inspiration to the total breath
time) is also different in different stages, WiFi-Sleep divides
inspiration and expiration segments, so FIT and I/E ratio (the
ratio of inspiratory to expiratory) and their variance are also
added as features. Fractional inspiratory time is also meaning-
ful in medicine because low values may reflect severe airways
obstruction and can also occur during speech, higher values
are observed when snoring [45].

For body movement, there are two kinds of body movements
during bedtime—MBM and PLM. MBM is movement and
muscle artifact obscuring the EEG for more than 15 s. MBM
contains body turns. It mostly occurs in the wake stage and
usually marks the transition from deeper stages to lighter
stages. PLM includes spontaneous sleep-related movements,
frequently involving the flexion of the toe, ankle, knee, and
hip. Each movement lasts for 0.5 to 10 s and occurs at an
interval between 5 s to 90 s. PLM is most frequent during
N1 and N2 stages. The movements become less frequent dur-
ing N3 and REM stages. To use MBM and PLM well, two
major characteristics of body movement are amplitude and
frequency. Body movements and their amplitude are obtained
in Section IV-C. We classify body movements with high ampli-
tude or more than 15 s in a 30-s moving window as MBM,
and others as PLM. We use weighted moving average (WMA)
with the Gaussian kernel function to calculate the frequency
of MBM and PLM. As shown in Fig. 7, body movements

Fig. 8. Completion of respiratory rate in duration with body movement.

Fig. 9. Respiratory rate before and after detrend.

obtained in Fig. 5 are classified into MBM and PLM. The 5th
movement lasts for more than 15 s, so it is MBM.

In the end, we extract 13 features of the respiration rate and
body movement in total which will be used for sleep stage
classification.

Before classifying sleep stages, we need to do some amend-
ments to features. We find that body movement will influence
respiration detection. The durations with body movements are
sparse during the whole night, so we remove these durations
and use linear interpolation to provide complete respiratory
features for subsequent sleep stage classification. As shown
in Fig. 8, there is a body movement at around 60 s, which
leads to an incorrect respiration rate in this period. We cut
and complete this period using linear interpolation.

We also need to detrend and standardize features. Removing
a trend from our data set allows us to focus on the fluctua-
tions rather than absolute values of the features. Traditional
detrend uses a line to fit data points as the baseline and then
calculates the difference between data points and the baseline.
For a relatively short time, this method can effectively remove
the overall trend of the data, and pay more attention to data
fluctuation. However, we have to use the features of about
8 h in the whole night, the overall trends of the features can
be complex in such a long time. A simple linear fitting can-
not represent the overall trend well. We can achieve a better
detrend effect if we use a higher order polynomial curve as
the baseline, and we find that this method is effective for res-
piratory rate. As shown in the upper figure of Fig. 9, before
detrend, the respiratory rate throughout the night tends to be
high at both ends and low in the middle. After detrending,
the trend is reduced and the fluctuations associated with sleep
stages are highlighted in the lower figure of Fig. 9. Finally,
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Fig. 10. Deep learning structure of WiFi-Sleep.

Fig. 11. Sleep cycle.

we detrend and standardize all features and feed them to the
classifier.

V. SLEEP STAGE CLASSIFICATION

We build a deep learning-based classifier, which consists
of convolutional neural network, bidirectional long short-term
memory (CNN-BiLSTM) layers, duration constraint, and tran-
sition constraint, as shown in Fig. 10. WiFi-Sleep aims to
classify four-class sleep stages, i.e., wake (W), light sleep (L),
deep sleep (D), and REM (R).

A. Sleep Stage Classification Based on Context

In the previous section, we extract physiological features
that are closely related to sleep stages. However, physiologi-
cal features at each moment are not isolated, there are stages
where the physiological features are stable like deep sleep, also
stages where the physiological features are changing, e.g., the
respiratory rate during light sleep may be gradually increasing
from low during “wake” to high during “deep sleep.” If we
use only the respiratory rate in a moment to determine sleep
stages, it will be difficult to distinguish light sleep and deep
sleep stages. The transition between the two stages may also
have some physiological features. The transition in the whole
night follows sleep cycle, as shown in Fig. 11. According to
the sleep stage interpretation manual by the American Medical
Association [5], a tendency may rise to shift to a lighter sleep
after body movement at a deeper sleep. For example, if a body
movement occurs during deep sleep, it will turn to light sleep,
while a body movement occurs during light sleep, it will turn

Fig. 12. Multiscale CNN structure.

to wake. Therefore, by taking the physiological features before
and after the current moment as context, and taking the tran-
sition of the sleep stage in the sleep cycle into consideration,
we may obtain better classification results.

WiFi-Sleep uses a CNN-BiLSTM neural network to utilize
the context of physiological features and the sleep stage tran-
sition information. CNN layers use a sliding window with the
current moment as the midpoint. The window slides the same
duration as sleep stage episode length, so the output of CNN
layers has the same sample rate as sleep stages.

For a CNN network, if we select a larger sliding window
and use a deeper network, the network can see the contextual
features for a longer time. However, it may not use fine-grained
features around the current moment well because features are
smoothed out by too many convolutional and pooling layers.
Using a smaller sliding window can alleviate this problem, but
there is less contextual information available. This problem
also exists in image processing, and multiscale CNN [46] has
been proposed to solve this problem. For the middle layer
of a CNN with a larger sliding window, the neuron out-
put has a receptive field smaller than the sliding window,
so the effect is similar to a neural network with a smaller
sliding window. In WiFi-Sleep, we adopt a multiscale CNN
network structure shown in Fig. 12. This structure can cap-
ture features with both longer and shorter durations at the
same time.

CNN layers take the physiological features in a period of
time as context. However, it is not able to use the context
of the whole night. CNN is also not good at utilizing tran-
sition features because it cannot see the classification result
of earlier and later episodes. The BiLSTM neural network
is able to remember the classification results and hidden
information from former and latter BiLSTM nodes. It is able
to use the whole night as context and capture transition fea-
tures. Therefore, we use the multiscale CNN and BiLSTM
together to form the CNN-BiLSTM network. Neural networks
with BiLSTM layers are more time consuming in training,
hence we pretrain CNN with an additional fully connected
(FC) layer to predict stages, and connect the output before
this layer to BiLSTM. This training strategy is more efficient.
The classification loss Lclass used for both CNN and BiLSTM
is cross-entropy loss.
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B. Duration Constraint

Each sleep stage lasts for a period of time. In each sleep
cycle, N1 lasts for 1–7 min, N2 lasts for 10–25 min, and
N3 lasts for 20–40 min. The amount of REM in each cycle
progresses throughout the night from being minimal initially
to 30% of the cycle eventually. Usually, the initial sleep
cycle lasts for 70–100 min, and the remaining cycles last for
90–120 min each. There may be brief wakefulness in REM and
light sleep, and there is only a unidirectional conversion or no
conversion between some stages. There are some regularities
of the sleep stage duration. However, deep learning only aims
at minimizing prediction errors. As a result, these rules will
sometimes be broken and may not achieve the best prediction.
We find that sleep stages predicted by CNN-BiLSTM usually
have frequent transitions. This phenomenon is more serious
between stages that are difficult to distinguish, such as deep
sleep and light sleep.

To eliminate frequent transitions, we apply a duration con-
straint by two steps—calculating stage duration expectation
and adding a loss to punish sleep stages that have too short
durations. The loss is defined on the expected stage duration
to ensure that it is differentiable. We calculate stage duration
expectations by dynamic programming (DP).

Let the jth output of BiLSTM at time i be Aij, we first
apply the LogSoftmax function to turn network outputs into
log probabilities Bij

Bij = exp
(
Aij

)
∑

k exp(Aik)
. (9)

We assume that the sleep stage of time i is j, let Cij be the
expected duration of stage j that lasts till time i, let d be the
unit duration

Cij =
{

0, (i = 0)

B(i−1)j
(
C(i−1)j + d

) + (
1 − B(i−1)j

)
d, (i �= 0).

(10)

We punish stages that have too short durations, the loss
Lduration is defined as follows:

Lduration =
∑

i>0

∑

j

ReLU
(
Tj − C(i−1)j

(
1 − Bij

))
(11)

where Tj is the minimum duration of stage jth. We choose
10 min for Wake, Light Sleep, and REM stages, respectively,
and 20 min for Deep Sleep.

C. Transition Constraint

Medical research shows that the transition of sleep stages
follows a certain rule [47]. In the normal sleep process, the
transition of sleep stage follows Light → Deep → Light →
REM, as shown in Fig. 11. However, we find that there are
unexpected transitions in predicted stages. For example, there
are transitions between Deep Sleep and REM, or from Wake to
REM directly. These transitions affect the accuracy and should
not exist in sleep medicine.

To eliminate these unexpected transitions, we add a condi-
tional random field (CRF) layer after BiLSTM. The CRF layer
is trained to maximize the likelihood of the ground truth sleep
stage sequence. We use negative log-likelihood as CRF loss

LCRF. The feature function used in CRF consists of two parts–
the transition score matrix and the output of the CNN-BiLSTM
network. We manually set the score of three unexpected tran-
sitions mentioned above to negative infinity, so that they will
never happen. Other parameters are learned during training.

We apply both duration and transition constraints to improve
accuracy. If we only apply stage duration constraint, the unex-
pected stages will only be prolonged, and if we only add
the transition constraint, the network will turn one unexpected
transition into two continuous legal transitions, such as turning
Deep → REM into Deep → Light → REM.

We use joint optimization to train the CNN-BiLSTM-CRF
network, the total loss Ltotal is a combination of each partial
loss, where α, β, and θ are weights

Ltotal = αLclass + βLduration + θLCRF. (12)

VI. EVALUATION

We implement a prototype system using commodity WiFi
devices, and conduct extensive experiments to evaluate WiFi-
Sleep by comparing it with the state of the art. We also
evaluate the performance of WiFi-Sleep in detecting human
respiration and body movement to fully discover its capability.

A. Implementation of WiFi-Sleep

We implement WiFi-Sleep using two GigaByte Mini PCs
equipped with Intel 5300 wireless cards as a WiFi transceiver
pair. Both operate at the 5-GHz WiFi channel with a band-
width of 20 MHz. The transmitter sends standard WiFi data
packets at a rate of 200 Hz to the receiver, which is equipped
with three omnidirectional antennas and configured to capture
CSI signals. We install an opensource Linux CSITool [48]
in the receiver to collect CSI data from 30 subcarriers for
each antenna. A Lenovo laptop with Intel Core i7-8550U CPU
and 8-GB RAM is connected to the receiver via an Ethernet
cable for processing CSI data using Python in real time. We
calculate the features from CSI data in a sliding window of
20 min and apply CNN with eight convolution layers and eight
max-pooling layers (each layer has 16 channels) to generate
128 features as the input to BiLSTM. The size of the hidden
layer and output layer for BiLSTM is set to 16. The CRF layer
is then connected to impose the transition constraint and out-
puts the final classification result of the sleep stage. In sleep
medicine, PSG cuts the whole night’s sleep duration into 30-s
episodes. Sleep diagnostic experts label one sleep stage for
each episode. For consistency, WiFi-Sleep also updates the
final sleep stage classification result once every 30 s.

B. Experimental Methodology

1) Data Collection: We deploy WiFi-Sleep in a sleep labo-
ratory at Peking University, which is set up for sleep study in
medical science. Fig. 13 illustrates our experimental setting in
which the transceiver pair is placed close to the bed. This set-
ting is recommended to ensure weak respiratory signals can
be picked up during sleep regardless of different sleep pos-
tures. We collect 19 nights of sleep data from 12 subjects aged
from 20 to 42. The data collection procedure is applied with
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Fig. 13. Experimental setting and PSG devices.

a formal approval obtained from the Human Subject Review
Committee at Peking University. Each subject is required to
sign a data protection agreement before participating. CSI data
of total size 24.1 GB is recorded. 15.5-GB data of 12 nights
collected from five subjects is used to train the neural network,
and 8.6-GB data of seven nights collected from the other seven
subjects is used for testing. Note that no data from the same
subject are used for both training and testing to demonstrate
the generality of WiFi-Sleep.

For all the experiments, we resort to the PSG system, i.e.,
medical gold standard, to label the ground truth of sleep
stages. As shown in Fig. 13, the PSG system requires subject
to wear massive sensors, including EEG, electrooculogra-
phy (EOG), electromyography (EMG), electrocardiography
(ECG), and thoracoabdominal belts to record the physiological
information. Meanwhile, the sleep laboratory is equipped with
infrared cameras for 7/24 monitoring. Specifically, the ground
truth of the respiratory rate is recorded by the thoracoabdom-
inal belts sensor, while the ground truth of body movement
is provided by the EMG sensor and infrared camera. By
analyzing all the information collected by PSG, three sleep
diagnostic experts label each sleep stage manually according
to AASM rules [5], providing the ground truth for sleep stage
classification.

2) Comparison Methods: As there is a lack of four-stage
sleep monitoring systems using commodity WiFi devices,
we compare WiFi-Sleep with both radar-based approach
and SMARS. Specifically, we select RF-Sleep [29] and
SMARS [18] as the baselines. RF-Sleep performs four-stage
classification by employing low-power radar devices. SMARS
achieves an accuracy of 88.4% for three-stage classification
(i.e., Wake, REM, and NREM) with a pair of commodity WiFi
devices. However, it did not attempt to identify four sleep
stages. We enhance SMARS by putting all its features into a
four-class SVM classifier to perform four-stage classification.

C. Sleep Stage Classification Performance

1) Overall Performance: We first evaluate the accuracy
of WiFi-Sleep for four-stage classification (i.e., Wake, REM,
Light sleep, and Deep sleep) and compare its performance
with the state-of-the-art. As shown in Table II, RF-Sleep [29]
achieves an accuracy of 79.8% for four-stage classification
using radar devices. SMARS achieves an accuracy of 69.4%
for four-stage classification using WiFi devices. In compari-
son, WiFi-Sleep achieves an average accuracy of 81.8% for
four-stage classification, outperforming both RF-Sleep and

TABLE II
COMPARISON OF DIFFERENT SLEEP STAGE CLASSIFICATION SYSTEMS

(a) (b)

Fig. 14. (a) Confusion matrix of WiFi-Sleep. (b) Sleep stage classification
performance of seven users.

TABLE III
ACCURACIES OF DIFFERENT FEATURE SETS

SMARS. Fig. 14(a) shows the confusion matrix of WiFi-Sleep.
We observe an accuracy of higher than 76% for all the stages.
Specifically, the “Wake” stage achieves the best accuracy of
88%, while the “Deep” stage has the lowest accuracy of 76%.
Note that even the lowest accuracy of WiFi-Sleep is better
than that of SMARS for four-stage sleep classification. The
performance improvement benefits from two aspects: 1) the
respiration waveform and body movement information provide
more features and 2) a specialized neural network with inputs
of stage duration and transition between different stages is
designed. Fig. 14(b) shows the precision, recall, and F1-score
for different users. The standard deviation of the F1-score is
only 3.58%, which suggests that WiFi-Sleep is reliable for
user diversity.

2) Feature Evaluation: To validate the effectiveness of
our features extracted from respiration waveform and body
movement, we group the features into three categories.

1) Basic Features in SMARS [18]: Respiration rate, respira-
tion rate statistics (variation and deviation), and motion
statistics.

2) Enhanced Respiration Features: Respiration depth vari-
ation, fractional inspiratory time, and ratio between
inhalation time and expiration time.

3) Body Movement Features: MBM and PLMs frequencies.
We first evaluate the performance of features in

SMARS [18] and then gradually add more exclusive features
in WiFi-Sleep to demonstrate its superiority to the state of the
art. Table III shows the classification accuracy increases when
adding more features related to sleep. In detail, the enhanced
respiration features and body movement features improve the
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TABLE IV
IMPACT OF EACH MODULE IN WIFI-SLEEP

Fig. 15. Sleep stage classification results during the whole night, (a) ground-
truth sleep stages, (b) CNN-BiLSTM method, (c) CNN-BiLSTM + duration
constraint, and (d) CNN-BiLSTM + duration constraint + transition constraint
(full WiFi-Sleep).

Fig. 16. Duration distribution of each stage. CNN-BiLSTM method
(a) without the duration constraint and (b) with the duration constraint.

overall accuracy by 2.3% and 5.6%, respectively. The results
show that the more features we add, the higher accuracy we
achieve.

3) Parameter Evaluation: To investigate the impact of
each module in WiFi-Sleep, i.e., context utilization, dura-
tion constraint, and transition constraint, we gradually enable
each module and analyze the results. Table IV shows the
performance increases with more modules added. Compared
with original CNN-BiLSTM, WiFi-Sleep improves the over-
all accuracy by about 8%. As shown in Fig. 15, WiFi-Sleep
effectively mitigates the unreasonable sleep stage and achieves
good classification results in the case of the whole night.

Impact of Duration Constraint: To investigate the impact
of duration constraint, we compare CNN-BiLSTM with and
without duration constraint. As shown in Fig. 15(b), the pur-
ple boxes illustrate the pieces of sleep stage that last only
for a very short time without duration constraint. By adding
the duration constraint module, Fig. 15(c) shows that these
pieces are mostly eliminated. Fig. 16 shows duration distribu-
tion for Light Sleep, Deep Sleep, and REM before and after

Fig. 17. Invalid sleep stage transition counts. CNN-BiLSTM method
(a) without the transition constraint and (b) with the transition constraint.

adding duration constraint. Due to the Wake stage lasts for an
arbitrary amount of time, we ignore its duration distribution.
Obviously, the duration distribution without constraint is very
different from the ground truth, while with the constraint, the
result becomes more similar to the ground truth. Specifically,
the duration of light sleep and REM stages are much shorter
than the ground truth. By adding duration constraint, the pre-
dicted stages are prolonged and the distribution is much closer
to the ground truth. Overall, the duration constraint improves
accuracy by 4.7%.

Impact of Transition Constraint: To investigate the impact of
the transition constraint, we compare CNN-BiLSTM with and
without transition constraint. The brown boxes in Fig. 15(c)
show two invalid transitions at the 1st and 7th h. By adding
transition constraint in Fig. 15(d), these invalid transitions are
all eliminated. To intuitively understand the impact of the tran-
sition constraint, we conduct statistics for invalid transitions
in the result of the test set. There are three kinds of invalid
transitions: 1) wake ↔ deep sleep; 2) REM ↔ deep sleep;
and 3) wake → REM. As shown in Fig. 17, there is no
invalid transition in the ground truth. Without the transition
constraint, there are a total of 11 invalid transitions in our test
set results. By adding the transition constraint, we eliminate all
invalid transitions. Overall, the transition constraint improves
the accuracy by 3.0%, and adding both duration and transition
constraints together improves the performance by 8.1%.

D. Respiratory Detection Performance

In this section, we evaluate the performance of WiFi-Sleep
in respiration detection and the impact of our two tech-
niques (i.e., CSI ratio and MRC-PCA) on accurate respiration
waveform.

1) Overall Performance: We evaluate the respiration detec-
tion performance in terms of detection rate, SNR, and res-
piration rate error. For the detection rate, we remove the
period with MBM in advance because neither thoracoabdom-
inal belts nor Wi-Fi is able to monitor respiration correctly
under MBMs. We use the method in Section IV-B to calculate
SNR. Fig. 18 shows that WiFi-Sleep achieves a detection rate
of 97.8% and the highest SNR. For the respiration rate error,
we calculate the cumulative distribution function (CDF) shown
in Fig. 19. WiFi-Sleep achieves an average error of 0.23 bpm
and a 90% error of 0.29 bpm.
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Fig. 18. Detection rate and SNR of different methods: (a) CSI, (b) MRC-
PCA, (c) CSI ratio, and (d) WiFi-Sleep (CSI ratio + MRC-PCA).

Fig. 19. CDF of detection error.

2) Impacts of CSI Ratio and MRC-PCA: In order to verify
the effectiveness of CSI ratio and MRC-PCA, we take dif-
ferent signals as input to evaluate the detect rate, SNR, and
respiration rate error. The signals are as follows.

1) CSI: Using CSI amplitude of one subcarrier.
2) MRC-PCA: Using CSI amplitudes of 90 subcarriers

from three receiving antennas.
3) CSI Ratio: Using CSI ratio of one subcarrier from one

receiving antenna.
4) WiFi-Sleep (CSI Ratio + MRC-PCA): Using CSI ratio

of 90 subcarriers from three receiving antennas.
From Fig. 18, we can see that CSI ratio improves the detec-

tion rate by about 5.9% and improves SNR by about 2.4 dB,
which is useful for the respiration feature extraction. We also
observe that MRC-PCA greatly improves the detection rate by
35.4% and SNR by 8.0 dB. By combining MRC-PCA and CSI
ratio, WiFi-Sleep achieves near 98% detection rate, implying
the respiration can be always detected. Similarly, compared
with the original CSI amplitude, the CSI ratio, MRC-PCA,
and WiFi-Sleep reduce the 90% respiration rate error from
6.9 to 6.2, 0.77, and 0.29 bpm, respectively.

E. Body Movement Detection Performance

In this section, we evaluate the performance of body
movement detection and the impact of the two thresholds to
detect PLM and MBM.

1) Overall Performance: Because the duration with body
movement represents only a small percentage of the whole
night, accuracy can be easily affected by a large dura-
tion without body movement, so it is not a good indicator
for performance evaluation of body movement. We evaluate
the performance of body movement detection by F1-Score,

Fig. 20. Confusion matrix of body movement detection.

Fig. 21. Upper figure shows two energy variance thresholds set for PLM
and MBM and their body movement detection accuracy and the lower figure
shows speed spectrum energy variance and two threshold lines marked in
green and red, respectively.

which takes both the precision and the recall into consid-
eration and evaluates the performance better. Because body
movement usually lasts for a couple of seconds, the marked
time point for the same body movement may have a devia-
tion of several seconds from that of ground truth. Therefore,
we consider each of our body movement detection correct if
the detected duration has more than 50% overlap time with
the ground truth. As shown in Fig. 21, the final F1-Score
for MBM and PLM reaches 86.8% and 95.3%, respectively.
The confusion matrix of body movement detection is shown
in Fig. 20.

2) Thresholds Evaluation: As mentioned in Section IV-C,
WiFi-Sleep uses two thresholds on spectrum energy variance
to detect PLM and MBM. For PLM, the threshold is set to
0.32. For MBM, the threshold is set to 4.7. We change these
two thresholds and compare the result using different thresh-
olds. The result is shown in Fig. 21. As we increase the
threshold, the precision gradually increases and the recall grad-
ually decreases. We can see that F1-Score drops if either of
the thresholds increases or decreases, implying the threshold
we choose is reasonable.

VII. CONCLUSION AND FUTURE WORK

In conclusion, we design WiFi-Sleep–a nonintrusive sleep
monitoring system based on commodity Wi-Fi devices to
achieve four-stage sleep monitoring. WiFi-Sleep is a low-cost
real-time system that can be easily applied in real scenarios for
long-term sleep monitoring. For future work, we will investi-
gate detecting sleep patterns related to sleep disorders, such as
chronic insomnia, restless legs, and sleep apnea, and further
improve our system.
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